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Question 1: The Dirac equation

a) The Langrangian density for the Dirac field Ψ is

L = Ψ(i∂/−m)Ψ .

Write the action in four space-time dimensions and use the variational principle to derive the Dirac
equation.

[3 marks]

b) Find all plane wave solutions of the Dirac equation for a particle at rest, i.e. ~p = ~0. State two
alternative methods to generate solutions with arbitrary spatial momentum ~p.

[6 marks]

c) Consider the covariant form of the Dirac equation. Assume that Ψ transforms under a Lorentz
transformation x′ = Λx as Ψ(x) → Ψ′(x′) = ΛsΨ(x), with Λs being a four-by-four (constant) matrix.
Show that the Dirac equation is form invariant (and hence covariant) if

Λ−1

s γνΛs = Λν
µγ

µ .

[6 marks]

d) Write the Dirac equation in five space-time dimensions and provide an explicit form for all the Gamma
matrices (i.e. γµ, with µ = 0, . . . , 4). Comment on whether this representation of the five dimensional
Lorentz algebra is reducible.

[5 marks]
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Question 2: The Dirac field (in this problem keep explicitly all factors of ~ and c)

a) Start from Dirac’s equation and motivate the relations

{
αi, αj

}
= 2δijI4 ,

{
αi, β

}
= 0 , β2 = I4 .

[4 marks]

b) Show that it is not possible to satisfy these relations with Hermitean 2× 2 or 3× 3 matrices.

[6 marks]

c) Consider a Dirac field of the form

Ψ = e−
i

~
mc2t

(
φ(t, xi)
χ(t, xi)

)
,

where φ and χ denote two component column spinors with space-time dependence. Start from Dirac’s
equation and decompose it into two coupled equations for φ and χ.

[3 marks]

d) In the non-relativistic limit one can use 1/c as an expansion parameter.

i) Assume that, in such an expansion, φ(t, xi) is of order one and show that χ(t, xi) is of order
1/c. Write the two equations obtained in Question 2(c) to leading order in the 1/c expansion
obtaining an equation for χ(t, xi) and one for ∂φ(t, xi)/∂t in terms of the space derivatives of
φ(t, xi).

[2 marks]

ii) Push these two expansions up to the first subleading correction in 1/c.

[5 marks]

Turn over
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Question 3: Symmetries and gauge fields

a) Show that the electromagnetic field strength Fµν = ∂µAν − ∂νAµ is invariant under the gauge trans-
formation Aµ → Aµ + ∂µχ, with χ an arbitrary, real function of the space-time coordinates.

[2 marks]

b) The Lagrangian density for the Dirac field Ψ is

L = Ψ(i∂/−m)Ψ .

i) Show that the transformation Ψ → eiχΨ, now with a real constant parameter χ, is a global
symmetry of L and find the corresponding conserved current.

[6 marks]

ii) Write the minimal coupling of this current to the gauge field Aµ and obtain the QED Lagrangian
density. By identifying the symmetry parameter χ with that of Question 3(a) show that the
QED action enjoys a local (gauge) invariance.

[5 marks]

c) The Chern-Simons Lagrangian density in three space-time dimensions is

LCS =
k

2
ǫρµνAρFµν ,

where ǫρµν is antisymmetric in the exchange of any two indices and ǫ012 = 1. Show that LCS changes
by a total derivative under the gauge transformation defined in Question 3(a).

[2 marks]

d) Derive the transformation properties of LCS under the proper Lorentz transformations and under
the improper ones (such as space reflection).

[5 marks]
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Question 4: The neutral Klein-Gordon

a) The Lagrangian density for a free, real Klein-Gordon field φ is

L =
1

2
(∂µφ∂

µφ−m2φ2) .

Obtain the field equation for φ.

[2 marks]

b) Obtain the conjugate variable to the field φ and write the canonical commutation relations.

[3 marks]

c) Use the Fourier expansion

φ(xµ) =

∫
d3k

2E~k
(2π)3

[
a(~k) e−ik·x + a†(~k) eik·x

]
,

and derive the commutation relation among the Fourier modes.

[7 marks]

d) Now set the mass to zero, m = 0.

i) Show that the commutator of two fields at generic space-time points x and y

i∆(x− y) = [φ(x), φ(y)]

vanishes outside the light-cone (i.e. when (x− y)2 6= 0).

[3 marks]

ii) Derive an explicit expression for 〈0|φ(x)φ(y)|0〉 and show that it does not vanish outside the
light-cone.

[5 marks]

Hint: the following integrals may be of help

∞∫

0

x eiαxdx = −
1

α2
,

∞∫

0

eiαxdx =
i

α

Turn over
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Question 5: The S-matrix

a) Consider the theory of one real φr and one complex scalar field φc defined by the action

S =

∫ {
1

2
∂µφr∂

µφr + ∂µφ
†
c∂

µφc −
1

2
m2φ2r − λφ†cφcφr

}
d4x .

Define the free Lagrangian density L0 and the interaction part Lint. Give the physical units for the
φ’s and λ so as to make the action dimensionless (use the conventions c = ~ = 1).

[4 marks]

b) Write the Dyson formula for the S-matrix in terms of Lint.

[4 marks]

c) Use the Fourier expansions

φr(x
µ) =

∫
d3k

2E~k
(2π)3

[
a(~k) e−ik·x + a†(~k) eik·x

]
,

φc(x
µ) =

∫
d3k

2|k|(2π)3

[
b(~k) e−ik·x + c†(~k) eik·x

]
.

The field φc creates a type of particles (c-particles) and destroys another type of particles (b-particles);
the field φr creates and destroys a-particles. Give at least one reason why b or c particles cannot
decay into a-particles.

[4 marks]

d) Consider the decay of an a-particle of momentum ~p3 into a b-particle and c-particle of momenta ~p1
and ~p2 respectively.

i) Write down the in- and out-states using the Fourier modes and the vacuum state |0〉.

[3 marks]

ii) Focus on the first term in Dyson’s formula that contributes to the decay process mentioned
above. Write this term as a function of the Fourier modes and calculate the decay amplitude.

[5 marks]

End of Paper - An Appendix of 1 page follows
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Appendix

Formula sheet (in units ~ = c = 1)

4-vector notation:

a · b = aµbµ = aµb
µ = aµbνηµν = aµbνη

µν with ηµν = ηµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




xµ = (t, ~x) , xµ = (t,−~x)

∂µ =
∂

∂xµ
=

(
∂

∂t
,−~∇

)
, ∂µ =

∂

∂xµ
=

(
∂

∂t
, ~∇

)
, p̂µ = i∂µ , p̂µ = i∂µ

Klein-Gordon equation: (−p̂ · p̂+m2)ψ = (∂µ∂
µ +m2)ψ = (�+m2)ψ = 0

Free Dirac equation in Hamiltonian form: i ∂
∂t
Ψ = (~α · ~̂p+ βm)Ψ, or in covariant form:

(i∂/−m)Ψ = (iγµ∂µ −m)Ψ = (p̂/−m)Ψ = (γ · p̂−m)Ψ = (γµp̂µ −m)Ψ = 0

Dirac and Gamma matrices:

(αi)2 = I4 , i = 1, 2, 3; β2 = I4; α
iαj + αjαi = 0 , i 6= j; αiβ + βαi = 0 , i 6= j;

γ0 = β, γi = βαi, {γµ, γν} = 2ηµνI4 ,

γ5 = iγ0γ1γ2γ3

Dirac matrices:

αi = σ1 ⊗ σi =

(
0 σi

σi 0

)
, i = 1, 2, 3 , β = σ3 ⊗ I2 =

(
I2 0
0 −I2

)
,

where the Pauli matrices are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Note that αi, β and γ0 are Hermitian, whereas the γi are anti-Hermitian. Id represents the d× d identity
matrix.


