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Tell your son to stop trying to fill your head with science - for to fill your heart with

love is enough! – Richard Feynman

This thesis is dedicated to Mum and Hubie who have supported me in every aspect of

my life. This thesis wouldn’t have been possible without their love and encouragement.



Know that for the human mind there are certain objects of perception

which are within the scope of its nature and capacity; on the other

hand, there are, amongst things which actually exist, certain objects

which the mind can in no way and by no means grasp: the gates of

perception are closed against it. Further, there are things of which the

mind understands one part, but remains ignorant of the other; and

when man is able to comprehend certain things, it does not follow

that he must be able to comprehend everything.

– Rambam (Maimonides), The Guide for the Perplexed



Abstract

Information about the very early universe can be accessed from observations of the

cosmic microwave background (CMB) radiation and the later formation of large-scale

structure (LSS) that are produced from cosmological perturbations of the early uni-

verse. The most developed theoretical explanation for the origin of these perturbations

is the theory of inflation, in which the early universe undergoes a period of accelerated

expansion, amplifying quantum fluctuations to macroscopic size, which act as the seeds

for the CMB anisotropies and the cosmic web of the LSS. The work in this thesis aims

to connect the theory of inflation to properties of these observables in a highly detailed

way, suitable for future high-precision astronomical surveys. After some introductory

review chapters, we begin with new research on a study of inflation from string theory,

deriving an observably-large value of the tensor-to-scalar ratio, which had been previ-

ously difficult to achieve theoretically. The next study investigates the link between the

observed CMB power asymmetry and non-Gaussianity, including a novel non-zero value

for the trispectrum. Next we study soft limits of non-Gaussian inflationary correlation

functions, focussing first on the squeezed limit of the bispectrum and then generalizing

to soft limits of higher-point correlation functions, giving results valid for multi-field

models of inflation.
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Chapter 1

Introduction

The standard Big Bang theory is incomplete - it doesn’t explain why temperature

variations are correlated on scales which, according to the standard Big Bang picture,

were never originally in causal contact.

In order to address this horizon problem, and the related flatness problem and the

magnetic monopole problem, the standard Big Bang theory needs to be augmented.

The leading solution is to presume an epoch of Cosmological Inflation [5], in which the

early universe undergoes a period of accelerated expansion, before beginning its hot

standard Big Bang phase.

At the classical level, inflation solves the above problems, allowing for the large

scales to be in causal contact early in the history of the universe and become correlated.

At the quantum level, inflation stretches quantum fluctuations to macroscopic size, later

becoming the perturbations we observe in the cosmic microwave background radiation

and the later formation of large-scale structure.

However, the precise microphysics necessary to give successful inflation remains

unclear. In order to give the required acceleration, the simplest theoretical models

suppose the universe is filled with a source for the acceleration that has an energy

density that remains nearly constant whilst the universe expands. This is starkly

different to any kind of ordinary matter/energy we have previously observed, which

instead dilutes as the universe expands.

Thus, it is a well-motivated topic to study the microphysics of inflation. At the

time of writing, there is no universally-accepted agreement on the true microphysics

of inflation. There are a large number of competing theoretical models, each of which

comes with its own predictions for observables. The aim of this thesis is to further

the understanding of the link between theoretical models and their corresponding pre-

dictions of observables. This fits into the overarching aim of the subject that aims to

discern the true underlying microphysics of inflation.

With each new experiment that provides information about the early universe, our
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CHAPTER 1. INTRODUCTION

models become more refined and constrained. Thus, it is necessary to have precise

theoretical predictions in order to be able to keep up with new experiments. The

results of this thesis provide precise theoretical predictions from a range of models

which have observables that may be detected in the near-future. I hope that the legacy

of this thesis is that it will be useful in the future work of determining the underlying

physics of inflation using future observations.

This thesis focusses on two broad approaches to inflation: the top-down approach

and the bottom-up approach. In the top-down approach, a well-motivated high-energy

theoretical model is assumed - in our case, string theory - and inflationary observables

are predicted. This approach is captured in Part I of this thesis, covering string theory

and inflation. In Part II of this thesis we consider the bottom-up approach, where

one is agnostic about the high-energy UV complete theory, and instead works with a

low-energy effective theory, which is supposed to be generic enough to capture a range

of high-energy models. In this thesis we work with multi-field models of inflation,

which are well-motivated enough to be considered generic from string theory construc-

tions. For these multi-field models we calculate inflationary observables, looking for

observational signatures which would imply a multi-field model of inflation.

A brief outline of this thesis is as follows.

In Chapter 2 we give an overview of inflation, covering theoretical topics in the

classical picture of inflation and the quantum fluctuations in inflation, and then move

on to observables in inflation.

In Part I we cover string theory and inflation. This part begins with an introductory

chapter, Chapter 3, on elements of string theory for inflation. It’s by no means a

thorough introduction to string theory, but at least serves as some introduction to the

necessary computational formulae for the next chapter. Chapter 4 contains original

work from Kenton & Thomas, [1], titled D-brane Potentials in the Warped Resolved

Conifold and Natural Inflation, where a model of natural inflation is derived from a

string theory D-brane model in the warped resolved conifold geometry.

In Part II we cover observables, with a particular focus on primordial non-Gaussianity.

The theme that links this part of the thesis is the coupling of long-wavelength modes

to short-wavelength modes that is a signature of a type of non-Gaussianity produced

in some multi-field inflation models.

Chapter 5 contains the original work of Kenton, Mulryne and Thomas, [2], in which

the observed CMB power asymmetry is produced using a long-wavelength mode of

a second light field, to modulate the short-wavelength power. The non-Gaussianity

required in this model contains a novel non-zero trispectrum in addition to a non-zero

bispectrum.

In Chapter 6, we review the work of Kenton and Mulryne [3], titled The squeezed

limit of the bispectrum in multi-field inflation which gives the first calculation of the
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CHAPTER 1. INTRODUCTION

squeezed limit of the bispectrum produced by inflation with multiple light fields, where

one long-wavelength mode acts as a background for the two shorter-wavelength modes.

Chapter 7 presents the work of Kenton and Mulryne [4], titled The Separate Uni-

verse Approach to Soft Limits, in which we generalize the results of Chapter 6 to include

any soft limit of any higher-point inflationary correlation function for multi-field mod-

els.

We conclude the thesis in Chapter 8 summarizing our findings and pointing to

future ideas in this field.

The appendices contain some calculational details which are not central for a first

read-through of this thesis, but which are all original and important for the consistency

of the presented calculations of the main parts of the thesis.

12



Chapter 2

Inflation

2.1 Classical Dynamics of Inflation

Inflation solves the horizon problem by assuming a spatially-flat Friedmann–Robertson–

Walker (FRW) expansion with metric

ds2 = −dt2 + a2(t)d~x2 , (2.1)

which at early times has a period of accelerated expansion, in which the scale factor

undergoes ä > 0. This is equivalent to a shrinking Hubble radius d
dt(aH)−1 < 0 or

that ε ≡ −Ḣ/H2 < 1, where the Hubble factor is H = ȧ/a. In order for inflation to

last long enough for inflation to solve the horizon problem, typically 60 e-folds, one

also requires η ≡ ε̇/(εH) < 1. The de Sitter limit, ε → 0, corresponds to exponential

growth a(t) ∼ eHt, with H approximately constant. The Einstein equations for this

FRW universe supported by a perfect fluid, with pressure P and energy density ρ, take

the form

3M2
pH

2 = ρ (2.2)

6M3
p (Ḣ +H2) = −(ρ+ 3P ), (2.3)

where Mp is the reduced Planck mass, with M−2
p ≡ 8πG = (2.4× 1018GeV)−2, and we

work in natural units where ~ = c = 1.

The accelerated expansion of inflation then requires a source with an equation of

state w ≡ P/ρ < −1/3. The simplest example of such a source is a scalar field

with a positive potential energy and negligible kinetic energy, although there are other

possibilities that we will also consider.
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CHAPTER 2. INFLATION

2.1.1 Single-Field Slow-Roll

Arguably the simplest model of inflation uses a single, slowly-rolling (which we define

shortly) scalar field, called the inflaton φ, which is minimally coupled to gravity with

the following action

S =

∫
d4x
√
−g

[
M2
p

2
R− 1

2
(∂φ)2 − V (φ)

]
. (2.4)

In an FRW background the Klein-Gordon equation for the inflaton is

φ̈+ 3Hφ̇+
∂V

∂φ
= 0 , (2.5)

where the Hubble rate is determined by the Friedmann equation

H2 =
1

3M2
p

[
1

2
φ̇2 + V

]
. (2.6)

These can be combined to form the equation

Ḣ = −1

2

φ̇2

M2
p

. (2.7)

We can then write ε in terms of the dynamics of φ as

ε =
3φ̇2[

φ̇2 + 2V
] . (2.8)

The field is said to be slowly-rolling when the potential dominates over the kinetic

energy, V � 1

2
φ̇2, and in this case inflation occurs, since ε � 1. Inflation persists if

the acceleration of the field is also small |φ̈| � 3H|φ̇|. In this model, one can define

the slow-roll parameters

εV ≡
M2
p

2

(
1

V

∂V

∂φ

)2

, (2.9)

ηV ≡
M2
p

V

∂2V

∂φ2
. (2.10)

In the case of slow-roll, which is the conditions V � 1

2
φ̇2 and |φ̈| � 3H|φ̇|, then

{εV , ηV } ∼ {ε, η}, so that arranging εV , ηV � 1 gives that ε, η � 1. Note that achieving

inflation in this single-field slow-roll setup requires the potential to be rather flat - this

can be hard to arrange from a top-down perspective, something we will investigate in

later chapters of this thesis.
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CHAPTER 2. INFLATION

There is a huge range of slow-roll inflationary models - they can be classified by the

type of potential. Here we just pick a couple of examples, highlighting Natural Infation,

which will be investigated in Chapter 4. For a more general review of inflationary

models, see for example, [6].

Chaotic Inflation – probably the simplest single-field slow-roll inflationary model is

chaotic inflation [7], where the potential is a monomial V (φ) = µ4−pφp, p > 0, where µ

has dimensions of mass.

Natural Inflation – In natural inflation [8], the potential is sinusoidal,

V (φ) = Λ4

[
1− cos

(
φ

f

)]
(2.11)

where Λ is a scale with dimensions of mass and the parameter f also has dimensions of

mass and is referred to as the ‘decay constant’. These models were originally motivated

by modelling the inflaton as a pseudoscalar axion, although the term natural inflation

is now used for any inflation model with a sinusoidal potential. Axions enjoy an ap-

proximate continuous shift symmetry at the perturbative level, but this gets broken to

a discrete shift symmetry by non-perturbative quantum effects. With the shift symme-

try, models of natural inflation are natural in an effective field theory sense, with the

shift symmetry protecting against corrections which don’t respect the symmetry.

2.1.2 Single-Field Non-Canonical

There is an alternative single-field theory to the single-field slow-roll theory, which we

refer to here as P (X,φ) type theories [9], with action

S =

∫
d4x
√
−g

[
M2
p

2
R+ P (X,φ)

]
(2.12)

where X ≡ −1

2
(∂φ)2, and P is an arbitrary function. The corresponding stress-energy

tensor is a perfect fluid form with pressure P and energy density ρ = 2XP,X−P , where

P,X denotes a partial derivative of P with respect to X. The Klein-Gordon equation

and Friedmann equation are

d

dt

(
a3P,X φ̇

)
= a3P,φ (2.13)

H2 =
1

3M2
p

(2XP,X − P ) . (2.14)

The inflationary parameter ε can be written in terms of P (X,φ) as

ε =
3XP,X

2XP,X − P
. (2.15)
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The condition for inflation, ε < 1, now becomes a condition on the function P (X,φ).

A special case of P (X,φ) models is DBI inflation [10], in which P (X,φ) takes the

following form

P (X,φ) = −T (φ)

[√
1− 2X

T (φ)
− 1

]
− V (φ), (2.16)

where T (φ) is an arbitrary function. Note that here one does not necessarily need a

flat potential in order to achieve inflation, because the higher-derivative kinetic terms

effectively slow down the scalar field motion, in contrast to the case of canonical kinetic

terms relying on a flat potential to slow down the motion of the scalar field.

2.1.3 Multiple Fields

Models of inflation with multiple fields (also known as multi-field inflation models) arise

generically when we try to embed inflation into a fundamental theory, such as string

theory or supergravity, whose low energy effective field theory involves multiple degrees

of freedom.

Here we consider the simplest case of slow-roll multi-field inflation, considering

only scalar fields. More complicated scenarios are also possible. We suppose there is

more than one scalar field varying during inflation, φi(t) = (φ1(t), φ2(t), · · · ). Different

authors have different definitions of multi-field inflation. If the inflationary trajectory is

just a straight line, we can rotate the field basis to align with the straight trajectory and

then the classical dynamics are indistinguishable from single-field inflation. However,

the quantum dynamics will be different from single-field inflation. For this reason, we

define multi-field inflation to occur whenever there is more than one light field present,

regardless of the curvature of the inflationary trajectory.

The Klein-Gordon equation and Friedmann equation for multi-field inflation are

φ̈i + 3Hφ̇i + ∂iV = 0 (2.17)

3H2 =
1

3M2
p

[
1

2

∑
i

φ̇i
2

+ V

]
(2.18)

where ∂i ≡ ∂
∂φi

and V = V (φi). Notice that even if there is no explicit coupling

between the multiple fields in the potential, through the Friedmann equation, they

are still gravitationally coupled. In single-field slow-roll inflation, the Hubble damping

during slow-roll inflation forces all trajectories to approach an attractor solution, where

all local variables such as the Hubble rate and field time-derivatives are all determined

by the local value of the single field (see e.g. [11]). Thus, any dependence on the

initial field and field time-derivative values of the trajectories are lost. However, in
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multi-field inflation, there can be a continuous family of trajectories in phase space,

where local variables depend on more than one field’s local value. These trajectories

don’t converge to an attractor and so there will be dependence on the initial field and

field time-derivative values. This allows non-adiabatic field perturbations to survive on

superhorizon scales during multi-field inflation.

An interesting example of multi-field inflation is assisted inflation [12], in which

inflation occurs with a large number of fields, each with a steep exponential potential,

whose combined effect of Hubble damping is to create an effective potential with an

exponential potential which is much less steep, providing inflation.

Another example is Hybrid Inflation [13], where there is an inflaton field, φ, and a

tachyonic waterfall field, ψ, with potential

VHybrid = V0 +m2
φφ

2 +
1

2
(g2φ2 −m2

ψ)ψ2 (2.19)

where inflation ends when the instability in the ψ field is triggered at a critical value

of φ. One should note that in most hybrid inflation models, although there is more

than one field, usually only one of the fields, say φ, is light, with a small effective mass

d2V/dφ2 � H2, with the other fields being heavy.

A final important example of a multi-field model, which we mention briefly now,

is the curvaton model [14–16] (see also [17, 18] for earlier related ideas), in which a

second light field is present during inflation, whose initial energy density is negligable.

Depending on the type of curvaton scenario, the quantum fluctuations of the curvaton

contribute different amounts towards the primordial curvature perturbation. We turn

to these inflationary quantum fluctuations next.

2.2 Quantum Fluctuations in Inflation

We have so far considered the classical dynamics of inflation, which solve the horizon

problem. Moreover, the quantum theory of inflation can also give a primordial micro-

scopic explanation for the observed temperature anisotropies in the cosmic microwave

background (CMB) radiation and the origin of large scale structure (LSS). The basic

idea is that quantum fluctuations of the inflaton (or other fields) seed the perturba-

tions in the local density after inflation which then leads to variations in the CMB and

LSS. It’s worth remarking that inflation was not engineered specifically to do this, and

the origin of these perturbations comes as a consequence of considering inflation quan-

tum mechanically. Heuristically, inflation stretches perturbations on small, subhorizon

scales, to larger superhorizon scales.

In the classical dynamics of inflation section, we considered homogeneous back-

ground scalar fields, φA(t), in a homogeneous FRW background metric. Now we con-
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sider inhomogeneous perturbations to the homogeneous background fields. We must

also have inhomogeneous metric perturbations about the homogeneous FRW back-

ground metric. The perturbed FRW metric, to linear order in scalar perturbations

is [11]

ds2 = −(1 + 2A)dt2 + 2a∂iBdx
idt+ a2 [(1− 2ψ)δij + 2∂ijE + hij ] dx

idxj . (2.20)

Here i, j, ... refer to spatial indices. Any vector can be split into a the gradient of a

scalar and a divergenceless vector, which we refer to as the vector part, and similarly

for rank-2 tensors. Considering this definition of scalar, vector and tensorial parts,

the field equations for the scalar and tensor parts decouple to linear order, and vector

perturbations vanish at linear order for inflation due to scalar fields [19]. The tensor

perturbations hij are transverse and traceless and are coordinate gauge-independent.

They describe primordial gravitational waves.

The three-dimensional intrinsic Ricci scalar curvature of constant-time hypersur-

faces is given by

(3)R =
4

a2
∇2ψ. (2.21)

We’ll express different gauges in terms of ψ in the next section.

2.2.1 Spatially Flat Gauge

There are a number of gauge choices that are taken in the literature. A common choice

is spatially flat gauge, in which ψ = 0 and hence (3)R = 0. We can split the scalar fields

into terms of background and perturbations in this flat gauge,

φi(t, ~x) = φi(t) + δφi(t, ~x). (2.22)

The linear order scalar field perturbation field equation, in spatially flat gauge, for

each fourier mode, with comoving wavenumber k, (which we suppress here) in a linear

order perturbed FRW spacetime is

¨δφi + 3H ˙δφi +

[
V,ij +

(
k

a

)2

δij −
1

M2
pa

3

d

dt

(
a3φ̇iφ̇j
H

)]
δφj = 0. (2.23)

At leading order in the slow-roll approximation, we can neglect the interaction terms

to obtain

δφi
′′ + 2Hδφi

′ +
(
a2V,ii + k2

)
δφi = 0, (2.24)

where we switched to conformal time, τ , defined through adτ = dt, denoting d/dτ with
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a prime ′. Small scale fluctuations, which are subhorion, k � aH, are under-damped

and behave like free oscillators. Deep inside the horizon, the fluctuations should be

indistinguishable from free field fluctuations in flat space, leading to the normalization

δφi →
e−ikτ

a
√

2k
, as τ → −∞. (2.25)

During inflation, aH increases, and modes which begin subhorizon start to exit the

horizon, k = aH, and eventually end up superhorizon, k � aH. Light fields, with

potential Vii � H2, have perturbations which become over-damped on superhorizon

scales, and essentially freeze-in at their horizon exit value, (2.25), evaluated at horizon

exit, k = aH. This gives the two-point correlation function for scalar field perturbations

[20,21]

Σij(k) =
H2
k

2k3
δij , (2.26)

where 〈δφi(~k)δφj(~k
′)〉 = δ(~k + ~k′)Σij(k). (2.27)

In the above, H2
k denotes H2 evaluated at the horizon exit time, tk, such that k =

a(tk)H(tk), where k = |~k|.

2.2.2 Curvature Perturbations

The curvature perturbation on uniform-density hypersurfaces, denoted ζ, has the defi-

nition (at linear order in perturbation theory)

ζ ≡ ψ +
H

ρ̇
δρ (2.28)

The curvature perturbation orthogonal to comoving worldlines is

R = ψ − H

ρ+ P
δq (2.29)

where the scalar part of the three-momentum perturbation is ∂iδq.

On superhorizon scales, R = −ζ, since by the Einstein equations,

−R− ζ = −2

3

Hρ

ρ̇

(
k

aH

)2 [
ψ + a2H

(
Ė − B

a

)]
. (2.30)

We note that ζ is conserved on superhorizon scales if the system reaches an adiabatic

limit [22,23]. In single-field models of inflation, the non-adiabatic pressure vanishes on

superhorizon scales, and hence ζ can be calculated a little after horizon exit, remaining

constant independently of the details of reheating or on the physics of the end of

inflation. In contrast, in multi-field models of inflation, there can in general be non-
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adiabatic perturbations, and hence ζ can evolve on superhorizon scales until the system

reaches an adiabatic limit.

According to the separate universe assumption, a curvature perturbation can be

written as a local perturbation to the scale factor as [22,24,25]

a(t,x) = a(t)eψ(t,x) (2.31)

on large scales. Choosing the t-slicing to be such that the spatial hyper surfaces have

uniform-density (UD) leads to ψUD(t,x) ≡ ζ(t,x), while a flat t-slice is defined by

ψflat(t,x) = 0. These are the non-linear generalizations of the curvature perturbations

we introduced above in linear perturbation theory. Following common convention in the

literature, we refer to this non-linear ζ as the uniform-density curvature perturbation.

We’ll now consider the form of the second-order action for the comoving curvature

perturbation for a single-field P (X,φ) type model using action given in Eq. (2.12),

which first appeared in [26]. It’s given by

S2 =

∫
d3~xdτ a2z

(
ζ ′

2 − c2
s(∂ζ)2

)
, (2.32)

where τ is conformal time, a prime denotes a derivative with respect to τ , and z and

cs are defined through

c2
s ≡

P,X
P,X + 2XP,XX

, (2.33)

z ≡ ε

c2
s

, (2.34)

where ε was defined in Eq. (2.15). Here, cs is the speed of sound of the fluctuations,

which, for a subluminal theory, can be ≤ 1. For simplicity we’ll consider a slow-

variation model, where ε and cs are slowly-varying. This requires η ≡ ε̇/(Hε)� 1 and

s ≡ ċs/(Hcs)� 1.

This allows us to introduce a new, canonically normalized field v such that v ≡ yζ,

where y2 = 2M2
pa

2z. This canonical field has time-dependent mode functions vk(τ)

which satisfy the Mukhanov-Sasaki equation

v′′k +

(
c2
sk

2 − y′′

y

)
vk = 0. (2.35)

This is the single-field, non-canonical version of Eq. (2.24), with a canonically normal-

ized field (one could have written Eq. (2.24) in terms of a similar Mukhanov variable -

the presentation here highlights that one can equivalently look at the field equation or

at the related Mukhanov-Sasaki equation). Initial conditions are computed by treating

ζ as a quantum field in a classical inflationary background. The Fourier modes are
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promoted to quantum operators

v̂~k = vk(τ)â~k + h.c. (2.36)

At early enough times, all modes are deep inside the horizon, and each mode feels like

it’s in Minkowski space and behaves like a free oscillator with zero point fluctuations

vk(t)→
e−ikcsτ

a
√

2kcs
, as τ → −∞. (2.37)

The fluctuation freezes at the value it took at sound horizon crossing, csk = aH.

Transforming back to ζ, we get the power spectrum of ζ defined by

〈ζk1ζk2〉 = Pζ(k1)(2π)3δ(k1 + k2), (2.38)

where

Pζ(k) =
1

4

H2

M2
p εcsk

3
. (2.39)

In the above, the quantities on the right-hand side are evaluated at the sound horizon

crossing time. One often defines the dimensionless power spectrum

Pζ(k) ≡ k3

2π2
Pζ(k) =

1

8π2

H2

M2
p εcs

. (2.40)

Any time-dependence of H and cs become scale-dependence of the power spectrum.

Perfect scale-invariance is given by Pζ(k) = const., and deviations from scale invariance

are captured by the scalar spectral tilt

ns − 1 ≡
d logPζ(k)

d log k
= −2ε− η − s (2.41)

where the right hand side holds for this slowly-varying single-field P (X,φ) model.

Typically, inflation requires {ε, |η|, |s|} � 1, hence predicting a near-scale invariant

power spectrum. Since we require that inflation ends at some time, we know that

{ε, η, s} can’t all be zero, and hence perfect scale-invariance is not predicted in realistic

models of inflation. All this held for a single-field, but the story is more complicated for

multi-field inflation, and is covered in Subsec. 2.2.6 when we review the δN formalism.

2.2.3 Gravitational Waves

Inflation predicts a spectrum of primordial gravitational waves due to the tensor pertur-

bations to the spatial metric, hij , as appeared in Eq. (2.20). Expanding the Einstein-
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Hilbert action to quadratic order in h gives

S2 =
M2
p

8

∫
d3~xdτ a2

(
(h′ij)

2 − (∂hij)
2
)

(2.42)

and a similar calculation to that of the curvature perturbations gives a dimensionless

tensor power spectrum

Pt(k) ≡ k3

2π2
Pt(k) =

2

π2

H2

M2
p

, (2.43)

and a tensor spectral tilt

nt ≡
d logPt(k)

d log k
= −2ε. (2.44)

Observations usually constrain the tensor to scalar ratio, r ≡ Pt/Pζ .
Using the formula for the tensor power spectrum (2.43), and the observed value for

the amplitude of the scalar power spectrum, ln(1010As) ≈ 3.062, where Pζ(k0) = As at

the Planck pivot scale of k0 = 0.05Mpc−1, we can write a relation between the energy

scale of inflation and the value of r, [27]

Einf ≡ (3M2
pH

2)1/4 ≈ 8× 10−3
( r

0.1

)1/4
Mp. (2.45)

We see that gravitational waves from inflation are only observable in the near-future if

inflation occured near the GUT scale, 1016GeV.

The Lyth bound [28], relates observable levels of gravitational waves to a super-

Planckian field displacement for the inflaton,

∆φ

Mp
> O(1)

( r

0.01

)1/2
(2.46)

where the order one constant depends on how r varies with number of efolds N , and

on how many e-folds of inflation are required, as set by the temperature of reheating.

Note that models will not necessarily saturate the Lyth bound and may exceed it by

some way.

This super-Planckian field displacement is perhaps problematic from an effective

field theory perspective. While at the low energy level, gravitational backreaction is

under control (since the potential is sub-Planckian) and radiative stability is not a

problem (there is a shift symmetry which makes the inflaton mass technically natural),

there is a problem when one considers couplings of the inflaton to the UV degrees of

freedom necessary for the ultraviolet completion of gravity. Intregrating out UV fields
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of mass Λ with order-unity couplings to the inflaton give an effective Lagrangian [29]

Leff [φ] = LLE[φ] +
∞∑
i=1

(
ci

Λ2i
φ4+2i +

di
Λ2i

(∂φ)2φ2i +
ei

Λ4i
(∂φ)2+2i + · · ·

)
(2.47)

where LE denotes the low energy Lagrangian that we began with, the ci, di, ei are

dimensionless order-one Wilson coefficients and the omitted terms are higher order in

derivatives. The masses of the fields should be Λ<∼Mp, so that one sees these corrections

will typically become important for super-Planckian field displacements and render the

effective Lagrangian non-flat over super-Planckian distances.

In Chapter 4 of this thesis we investigate a string theory model of inflation where

a super-Planckian displacement occurs and where we explicitly derive the effective

Lagrangian, finding that in this particular example, the effective Lagrangian is flat

in this direction of field space. However, we will see that the required model is not

perfect and seems a little contrived. However, it is important evidence that typical

expectations from effective field theory arguments can be evaded in certain top-down

constructions.

2.2.4 Non-Gaussianity

The Planck data contains about 50 million pixels. An enormous amount of data com-

pression occurs in reducing this to the CMB power spectrum, which contains about

a thousand multipole moments. This can only be justified if the primordial pertur-

bations were drawn from a Gaussian distribution with random phases. In principle,

there is more information that can be gleaned from the CMB anisotropies, contained

in deviations from the Gaussian distribution.

We separate different origins for a non-Gaussian CMB:

1. Primordial non-Gaussianity : the primordial curvature perturbation can have

non-Gaussian statistics produced in the early universe during inflation, or an

alternative.

2. Other non-Gaussianity : non-Gaussianity can arise from later time effects too. For

example, it may occur due to the non-linear relation between ζ and the tempera-

ture anisotopy at the time of recombination. It may also occur from astrophysical

foreground effects such as lensing due to galaxies and galaxy clusters.

We focus on the first type of source, primordial non-Gaussianity, in this thesis. It

should be noted that in order to extract this primordial signature, we must understand

and quantify the other sources, though we don’t study these effects in this thesis.

In Subsec. 2.2.2 we looked at the two-point correlation function of ζ, captured

by the power spectrum. If the primordial perturbations are perfectly isotropic and
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Gaussianly distributed, then all of the statistical information is contained within the

power spectrum. However, many models can give a similar power spectrum, so to

distinguish between them we need to look at deviations from Gaussianity. Information

about the non-Gaussian aspect of the distribution is contained within higher-order

correlation functions, with the primary diagnostic being the three-point correlation

function. This is captured by the bispectrum, Bζ , of the curvature perturbation defined

by

〈ζk1ζk2ζk3〉 = Bζ(k1, k2, k3)(2π)3δ(k1 + k2 + k3). (2.48)

We can define the kernels, Gn, of the n-point correlation functions

〈ζk1 · · · ζkn〉 = Gn(k1, . . . , kn)(2π)3δ(k1 + · · ·+ kn). (2.49)

A Gaussian distribution has G2n ∝ Pnζ and G2n+1 = 0. The kernel of the four-point

function is called the trispectrum, denoted Tζ . Often observational constraints are

given in terms of a reduced dimensionless kernel. For example, the reduced bispectrum

is defined as

fNL(k1, k2, k3) ≡ 5

6

Bζ(k1, k2, k3)

[Pζ(k1)Pζ(k2) + (k1 → k2 → k3)]
. (2.50)

2.2.5 The in− in Formalism

Central to inflationary cosmology is the calculation of inflationary correlation functions.

In this section we focus on quantum mechanical effects which generate non-Gaussianity

before or during horizon exit. In the next section, Sec 2.2.6 we focus on classical effects

which can generate non-Gaussianity after horizon exit. The calculation of inflation-

ary correlation functions differs to the calculation of the S-matrix in applications of

quantum field theory to standard particle physics. For the S-matrix, one computes

〈out|S|in〉 = 〈out(+∞)|in(−∞)〉 (2.51)

interpreted as the probability for a state in the far past, |in〉, to transition to a state |out〉
in the far future. However, for inflationary correlation functions, we are interested in

equal-time expectation values of operators, taken in the state corresponding the vacuum

in the far past - since in the far past the wavelengths are much smaller than the horizon

and hence the interaction-picture fields will have the same form as in Minkowski space,

due to the equivalence principle. This state is called the Bunch-Davies vacuum state,

denoted |in〉, taken to be the interacting theory vacuum at time ti, in the far past. Thus

the formalism we now present is called The in − in Formalism, where expectations of
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operators, O(t), where t > ti, are taken in two |in〉 states

〈O(t)〉 = 〈in|O(t)|in〉 . (2.52)

To compute the right-hand-side of (2.52) we evolve O(t) back to time ti, using the

perturbed Hamiltonian δH = H0 +Hint, where H0 is the free (quadratic) Hamiltonian

and Hint is the interacting Hamiltonian, which in this formalism has to be treated as a

perturbation to the free Hamiltonian, allowing for a perturbative expansion. The result

is [30] (see also [31–35])

〈O(t)〉 = 〈0|T̄ ei
∫ t
−∞(1−iε)Hint(t

′)dt′O(t)Te
−i

∫ t
−∞(1+iε)Hint(t

′′)dt′′ |0〉 , (2.53)

where |0〉 is the free theory vacuum, and T (T̄ ) is the (anti-)time-ordering symbol.

One can then perturbatively expand the exponentials, organising the expansion with

Feynman diagrams, with the leading order term corresponding to the tree level result,

and higher orders corresponding to loop results. This formalism can be applied to

calculate, for example, the three-point correlator of ζ at horizon crossing time, allowing

for a calculation of non-Gaussianity using this method.

In [36], Maldacena calculated that for single-field, slow-roll models, the non-Gaussianity

was of order the slow-roll parameters, with the detailed answer given by

〈ζ~k1ζ~k2ζ~k3〉 = (2π)3δ(~k1 + ~k2 + ~k3)
H4

φ̇4

H4

M4
p

1∏
(2k3

i )
A(ki) (2.54)

A(ki) ≡ 2
φ̈

Hφ̇

∑
k3
i +

φ̇2

H2

1

2

∑
k3
i +

1

2

∑
i 6=j

kik
3
j + 4

∑
i>j k

2
i k

2
j

k1 + k2 + k3

 . (2.55)

This result gives a reduced bispectrum that is of order O(ε, η) and as we will see in the

section on observations, this is out of reach of current and future observational probes

of non-Gaussianity.

2.2.6 The δN Formalism

In Sec. 2.2.5 we considered non-Gaussianity from quantum mechanical effects before

and during horizon exit. In this section we review the δN formalism which can be used

to calculate the correlation functions of ζ, including non-Gaussian contributions arising

from non-linearities after horizon exit when all modes have become classical.

Scalar perturbations to the spatial part of the metric on a fixed-time hypersurface

can be written as a local perturbation to the scale factor giving a spatially dependent

definition of the scale factor as in Eq. (2.31), as parametrized by ψ. The local number

of e-folds which occurs between two time slices of the perturbed spacetime, labeled by
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T and tu respectively, with T < tu, is a function of position and is given by

N(T, tu,x) ≡
∫ tu

T

ȧ(t,x)

a(t,x)
dt =

∫ tu

T
H(t)dt+ ψ(tu,x)− ψ(T,x) (2.56)

while the unperturbed number of e-folds is given by N0(T, tu) ≡
∫ tu
T H(t)dt. Taking

the T -slices to be flat, and the tu-slices to be uniform density gives

ζ(tu,x) = N(T, tu,x)−N0(T, tu) ≡ δN(tu,x) (2.57)

which is the celebrated δN formula [37]. We note that δN doesn’t depend on the initial

time T [22]. Typically T is taken to be some time after all the modes involved in a given

correlation function have exited the horizon (for the bispectrum this means T > t3). If

the system becomes adiabatic ζ is also independent of tu and so the later time tu should

be the time at which adiabaticity is reached. If it doesn’t become adiabatic, then tu

can be taken to be the time at which the correlations are required (see for example the

discussion in Ref. [38]).

To use this formalism in practice, we must employ the separate universe approxi-

mation [39, 40] to cosmological perturbation theory. This states that on super-horizon

scales positions in the perturbed universe evolve independently of one another, and

do so according to the same equations as the unperturbed cosmology, so that every

position can be treated as a ‘separate universe’. The number of e-folds which occur at

every position can therefore be calculated using the local conservation and Friedmann

equations in that separate universe.

For an inflationary model with n scalar fields, φi, where i runs from one to n,

we can split the field values on any flat slice into background and perturbed parts

φi(t,x) = φi(t) + δφi(t,x). In later chapters, we use uppercase indices A,B, ... which

run over all degrees of freedom. Further demanding that the slow-roll equations of

motion are satisfied at time T , such that 3H2 = V (φi) and 3Hφ̇i = −V,i , the initial

conditions at time T for the perturbed cosmology become dependent only on φi(T,x).

Consequently, the number of e-folds to any subsequent time slice becomes a function

only of the initial field values, even if the cosmology evolves away from slow-roll. In

particular, we can write

N(T, tu,x) = N((φi(T,x)), tu) = N((φi(T ) + δφi(T,x)), tu) (2.58)

which gives

ζ(~x) = N((φi(T ) + δφi(T,x)), tu)−N0(φi(T ), tu). (2.59)

One can then Taylor expand in the initial flat slicing field perturbations, which in
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Fourier space leads to [37,41]

ζk1 = N
(T )
i δφ

(T )
i,k1

+
1

2
N

(T )
ij (δφ

(T )
i ? δφ

(T )
j )k1 + ... (2.60)

where N
(T )
i ≡ ∂N0

∂φ
(T )
i

, (2.61)

and where ? denotes convolution. The additional vector (boldface) subscript indicates

wavevector and the superscript in brackets is a shorthand indicating evaluation time

φ
(T )
i ≡ φi(T ) (2.62)

which we use from now on.

The correlation functions of the field perturbations are defined as

〈δφ(T )
i,k1

δφ
(T )
j,k2
〉 = Σ

(T )
ij (k1)(2π)3δ(k1 + k2) (2.63)

〈δφ(T )
i,k1

δφ
(T )
j,k2

δφ
(T )
k,k3
〉 = α

(T )
ijk (k1, k2, k3)(2π)3δ(k1 + k2 + k3) (2.64)

such that the power spectrum [37] and bispectrum [41] of ζ are given by

Pζ(ka) =N
(T )
i N

(T )
j Σ

(T )
ij (ka) (2.65)

Bζ(k1, k2, k3) =N
(T )
i N

(T )
j N

(T )
k α

(T )
ijk (k1, k2, k3)

+N
(T )
i N

(T )
jk N

(T )
l

[
Σ

(T )
ij (k1)Σ

(T )
kl (k2) + (k1 → k2 → k3)

] (2.66)

where the arrows indicate there are two additional terms formed by cyclic permutations.

For light, canonically normalized fields, the field-space correlation function for a

given wavenumber takes a very simple form at the time the wavenumber crosses the

horizon1 (and from which the δN formalism can be employed), one finds (as explained

in (2.26)) [20,21]

Σ
(1)
ij (k1) =

H(1)2

2k3
1

δij , (2.67)

where H(1) ≡ H(t1) , and t1 is the horizon exit time of k1, where k1 = a(t1)H(t1).

In the most common application of δN , one assumes a near-equilateral momentum

regime, where all the wavenumbers are approximately equal, k1 ≈ k2 ≈ k3 and thus

the horizon crossing times of the three wavenumbers involved in the bispectrum can be

identified with a single time, t∗, such that t1 ≈ t2 ≈ t3 ≈ t∗. In this regime, it is then

common to make the simple choice T = t∗.

1 Strictly speaking this result is the form the two-point function takes once the decaying mode
present at horizon crossing has been lost, written in terms of horizon crossing parameters.
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For canonical slow-roll inflation, one can take2

Σ
(∗)
ij (k1) ≈ H(∗)2

2k3
1

δij , (2.68)

and similarly for the other wavenumbers, k2 and k3. Moreover, Seery & Lidsey [43] used

the in-in formalism to calculate α
(∗)
ijk(k1, k2, k3) in the close to equilateral momentum

configuration at the time t∗. They found

α
(∗)
ijk(k1, k2, k3)

=
4π4

k3
1k

3
2k

3
3

(
H(∗)

2π

)4 ∑
6 perms

φ̇
(∗)
i δjk

4H(∗)

(
−3

k2
2k

2
3

kt
− k2

2k
2
3

k2
t

(k1 + 2k3) +
1

2
k2

1 − k1k
2
2

)
(2.69)

where the sum is over the six permutations of (ijk) while simultaneously permuting

the momenta (k1, k2, k3) where i is associated with k1, j is associated with k2 and k

is associated with k3. We emphasize that this result assumed that the three k modes

crossed the horizon at roughly the same time and cannot be trusted when the crossing

times are too different3, as in the case of the highly squeezed limit, k1 � k2 ≈ k3,

which we will consider later in this thesis.

Sticking with the near-equilateral configuration, with k1 ≈ k2 ≈ k3, and taking the

δN initial time T = t∗, the results (2.67) and (7.47) can then be used together with

Eqs. (2.65)-(5.4) to give the well-known expression [41], valid when fNL(k∗)� O(ε),

fNL ≈
5

6

N
(∗)
i N

(∗)
ij N

(∗)
j

(N
(∗)
l N

(∗)
l )2

, (2.70)

where (2.69) has been used to demonstrate that the second term in Eq. (2.66) must

dominate over the first term if fNL is to be large – i.e. the contribution from α is

neglected [44]. Eq. (2.70) retains a dependence on k∗ through the horizon crossing time

t∗, and the relation that k∗ = a(t∗)H(t∗).

Given that it retains this dependence on the crossing scale, which is a measure of

the overall scale of the bispectrum in the near-equilateral configuration, the bispectrum

calculated above is sometimes referred to as quasi-local (to be contrasted with the local

shape, in which fNL is independent of all three k’s). Differentiating (2.70), Byrnes et

2The leading order in slow-roll correction to this [20, 21, 42] is to replace δij 7→ δij + 2cuij , where
c ≡ 2− log 2− γ, with γ the Euler-Masheroni constant, and uij = −(log V ),ij , but we will not use this
correction in this thesis.

3This is because in evaluating the time integrals of the in-in calculation, the time-dependent coef-
ficients of the field perturbations were all evaluated at the common horizon crossing time, t∗, of the
near-equilateral modes. This can’t be done if the modes exit at largely different times, as is the case
in the highly squeezed limit.
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al. [45] gave an expression for the tilt of fNL, denoted nfNL
, for equilateral triangles

n
(∗)
fNL
≡ d log |fNL|

d log k
=

(n
(∗)
i + n

(∗)
j + n

(∗)
ij )N

(∗)
i N

(∗)
ij N

(∗)
j

N
(∗)
l N

(∗)
lmN

(∗)
m

− 4n̂ (2.71)

where n
(∗)
i ≡

1

H

d logN
(∗)
i

dt∗
, n

(∗)
ij ≡

1

H

d logN
(∗)
ij

dt∗
and n̂ ≡

n
(∗)
i N

(∗)
i N

(∗)
i

N
(∗)
j N

(∗)
j

.

(2.72)

2.2.7 Numerical Techniques for Inflationary Correlation Functions

The in-in formalism can be used to accurately calculate inflationary correlation func-

tions analytically for many single-field models, while other models, such as those in-

cluding features, require a numerical implementation [46–49].

Recently, there has been progress on performing numerical computations of in-

flationary correlation functions for multi-field models, with automation of the power

spectrum and bispectrum in canonical multi-field inflation being completed in [50–52].

This includes all relevant effects at tree level. It relies on numerical routines which

solve the Moment Transport differential equations [53–57].

This is to be compared with previous codes such as Pyflation [58] and MultiMod-

eCode [59] which numerically compute the power spectrum from canonical multi-field

models, and [60] which numerically computes the power spectrum from curved field

space multi-field models.

2.3 Observables

In this section we relate the results of the theoretical calculations of Sections 2.1 and 2.2

to observations of the cosmic microwave background (CMB) radiation and large-scale

structure (LSS).

Using the separate universe approach, Wands et al. [40] showed that ζ is conserved

on superhorizon scales when the non-adiabatic pressure perturbation is negligable, in-

dependent of the gravitational field equations (to be contrasted with Weinberg’s ap-

proach [61]). In order to compare late-time observables with early universe physics, it’s

necessary to know the evolution of perturbations up until the point at which adiabatic-

ity is reached, and from then onwards one can apply this conservation law.

2.3.1 Cosmic Microwave Background

Once perturbations reenter the horizon they lead to the observed CMB anisotropies.

The curvature perturbation lead to fluctuations in the energy density, δρ. When the

universe expands and gets sufficiently cool, neutral hydrogen forms, capturing electrons
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allowing photons to decouple, creating the CMB. The temperature of the CMB gets

anisotropies (relative to the background temperature T0 = 2.7K) resulting from δρ.

The temperature anisotropies, ∆T (~n), have the spherical harmonic expansion

∆T (~n)

T0
=

l=∞∑
l=0

m=+l∑
m=−l

almYlm(~n). (2.73)

The multipole moments can be combined into an angular power-spectrum

CTTl =
1

2l + 1

∑
m

〈a∗lmalm〉 . (2.74)

It is these Cl’s that CMB observations can constrain. They can also be related to the

primordial power spectrum via

CTTl =

∫
d log kPζ(k)(∆s

l,T (k))2, (2.75)

where the Transfer Function, ∆s
l,T (k), describes the imprint on the temperature per-

turbations (T ) from the evolution of the initial scalar (s) fluctuations from horizon

entry time to the recombination time and projection effects from recombination time

to today. It depends only on known physics, and is computed by numerically solving

coupled Einstein-Boltzmann equations [62–64].

Recombination wasn’t instantaneous, and during the time it took for electrons

and protons to combine into neutral hydrogen the photons developed a quadrupo-

lar anisotropy in the local electron rest frame, leading to an anisotropy of the CMB

polarization. The polarization anisotropy can be broken into parity even (E) and par-

ity odd (B) mode parts. Symmetry forbids scalar modes from forming B modes and

hence detecting B modes would signal the presence of primordial tensors (gravitational

waves).

Examples of the corresponding transfer functions for scalar (s) and tensor (t) per-

turbations into temperature, T , and E- and B-mode polarizations are shown in Fig. 1.

The observed data for the temperature power spectrum, TE cross correlation and

EE power spectrum are shown in Fig. 2 assuming the Planck best fit ΛCDM cosmology

and a nearly scale-invariant spectrum as predicted by inflation. The CMB anisotropies

have coherent phases, as demonstrated by the series of peaks and troughs in the power

spectra, due to constructive and destructive interference. In the absence of coherence,

the first peak in the TE cross-correlation wouldn’t be present [66]. Inflation predicts

coherent phases for its perturbations since modes are frozen on superhorizon scales and

start evolving when they reenter the horizon - this time being common for all modes
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Figure 1: From Planck et al. [65]. Comparison of transfer functions for the scalar and
tensor modes into T , E, and B modes. These functions are plotted for two representative
values of the multipole number: l = 2 (in black) and l = 65 (in red).
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Figure 2: From Planck et al. [65]. Angular power spectra, with Dl ≡ l(l + 1)Cl. Blue
points are averages of binned data points. Red line is theoretical curve for Planck’s best
fit ΛCDM cosmology.
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Figure 3: Figure adapted from Hlozek et al. [69]. Combination of measurements of the
dark matter density power spectrum. Solid line is non-linear while dashed line is linear

with distinct ~k but with the same wavenumber k. Alternative theories of structure

formation, such as cosmic strings, have perturbations with incoherent phases, and as

such are now strongly ruled out by CMB observations.

2.3.2 Large Scale Structure

At recombination, the density fluctuations are small, but gravity causes them to grow

with time, and they eventually produce the large-scale structure of the universe. At

linear order in the perturbations, the dark matter density contrast δ has a power

spectrum, Pδ(z, k) that can be related to the inflationary scalar power spectrum via

Pδ(z, k) = T 2
δ (z, k)Pζ(k) (2.76)

where the dark matter transfer function T 2
δ (z, k) can be determined by perturbation

theory on large scales [67] and via numerical N-body simulations on small scales [68].

One way of probing the dark matter density directly is gravitational lensing, however,

more common is the observation of some biased baryonic tracer, such as galaxies and

clusters. On large scales the dark matter density contrast can be linearly related to the

density contrast of the baryonic tracer, δg, via a local bias factor

δ(z, ~x) = b(z)δg(z, ~x). (2.77)

However, on small scales, the density becomes non-linear (as can the bias). The dark

matter density power spectrum is shown in Fig. 3.
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Parameter Planck TT + lowP + lensing (68%)

Ωbh
2 0.02226± 0.00023

Ωch
2 0.1186± 0.0020

ΩΛ 0.692± 0.012

τ 0.066± 0.016

ln(1010As) 3.062± 0.029

ns 0.9677± 0.0060

Table 1: ΛCDM model parameter constraints from Planck 2015 [72]

A scale-dependent shift in the bias can be introduced by primordial non-Gaussianity,

see, for example, [70, 71]. This will be of interest to us in the chapter on the squeezed

limit of the bispectrum, to which the scale-dependence of the bias is particularly sen-

sitive.

The oscillations present in the CMB are also present in the dark matter power

spectrum, since the Einstein equations couple the photon-baryon fluid to the dark

matter density, producing Baryon Acoustic Oscillations.

2.3.3 ΛCDM Model

The standard model of cosmology is referred to as the ΛCDM model and contains

just six free parameters: the physical baryon density today, Ωbh
2, the physical cold

dark matter density today, Ωch
2, the dark energy density today divided by the critical

density, ΩΛ, the optical depth, τ , the scalar amplitude As and the scalar spectral index

ns for the power law ansatz for the initial conditions

Pζ(k) = As

(
k

k0

)ns−1

(2.78)

where the pivot scale is k0 = 0.05 Mpc−1. Note that h is defined by the Hubble constant

at the present day, H0 = 100 h km s−1 Mpc−1. This base ΛCDM model assumes a

spatially-flat universe with negligable contributions from tensor modes to the CMB

temperature fluctuations.

The best-fit constraints on the ΛCDM parameters from Planck 2015 [72] are given

in Table 1.

2.3.4 Primordial Gravitational Waves

Adding a tensor component to the base ΛCDM, the joint polarization data from Planck

2015 and BICEP2, Keck Array and Planck (BKP) data [73] gives the upper limit on

the tensor-to-scalar ratio r < 0.09 at pivot scale k0 = 0.002 Mpc−1 [72]. The allowed

parameter space region in the ns − r plane is shown in Fig. 4, along with theoretical
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Figure 4: Figure from Planck 2015 [65]. Marginalized joint 68% and 95% CL regions
for ns and r at k0 = 0.002 Mpc−1 from combination of Planck and BICEP2/Keck
Array and/or BAO data compared with the theoretical predictions of selected inflationary
models. Note that the marginalized joint 68% and 95% CL regions have been obtained
by assuming no running of the scalar spectral index, dns/ dlnk = 0.

predictions of these parameters for selected inflationary models.

These contour plots should be compared to the data from BICEP2 alone [74], which

suggested a detection of r = 0.20+0.07
−0.05. However, it was later found that the BICEP2

analysis included modelling of the level of dust contamination which is now thought to

be too low. With the original BICEP2 data, it appeared to favour inflationary models

such as Natural Inflation, with a cosine potential cos(φ/f), where the decay constant f

is super-Planckian. For this reason, in Chapter 4, we consider such a model of Natural

Inflation derived from string theory, in order to explore whether an observably large r

can be derived in a string theory construction.

We note now, however, that using the combined Planck TT + lowP + BKP +

BAO data, as in the blue region in Fig. 4, puts natural inflation into mild tension with

observations and so there is now less motivation for studying these inflationary models

from an observational perspective. However, from a theoretical perspective, they are

still interesting.

There are future experiments looking for primordial B-modes, including EBEX [75],

BICEP3 [76], ABS [77], SPIDER [78] and CLASS [79] on degree scales, and SPTPol [80],

POLARBEAR [81] and ACTPol [82] on arcminute scales. A detection from any of these

would require a natural inflation model to have a super-Planckian decay constant.

2.3.5 Constraints on Primordial Non-Gaussianity

The primary diagnostic of primordial non-Gaussianity comes from the bispectrum of the

curvature perturbation. Data can’t constrain an entirely free function, so first a shape
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template needs to chosen and then an amplitude for this shape can be constrained from

the data. The Planck collaboration has tested for non-Gaussian signals parameterized

by the following shape templates

Blocal(k1, k2, k3) ≡ 6

5
f local

NL (P1P2 + perms.) (2.79)

Bequil(k1, k2, k3) ≡ 3

5
f equil

NL

(
6(P 3

1P
2
2P3)1/3 − 3P1P2 − 2(P1P2P3)2/3 + perms.

)
(2.80)

Bortho(k1, k2, k3) ≡ 3

5
fortho

NL

(
18(P 3

1P
2
2P3)1/3 − 9P1P2 − 8(P1P2P3)2/3 + perms.

)
(2.81)

where Pi = Pζ(ki) for i = 1, 2, 3. We now give some physical intuition for these choices

of shape templates:

Local: This shape arises from the following local ansatz in real space for the non-

Gaussian random variable ζ, in terms of a Gaussian random variable ζG

ζ(~x) = ζG(~x) +
3

5
f local

NL

[
ζ2
G(~x)− 〈ζ2

G(~x)〉
]
. (2.82)

The signal in this template peaks in the squeezed configuration, k1 � k2 ∼ k3. Under

mild assumptions4 all single-field inflationary models predict an unobservably small

signal in the squeezed configuration, and hence, since the local shape peaks in the

squeezed configuration, all single field models with these assumptions won’t produce

a signal for the local shape template. On the other hand, some multi-field models of

inflation may predict a shape similar to the local shape template, with the amplitude

of the predicted f local
NL dependant on the model details. The strong constraint on f local

NL

in Table 2 thus constricts models of multi-field inflation. To be clear though, it does

not rule out all models of multi-field inflation. On the other hand, a detection of a

non-zero f local
NL would rule out all single field models under the mild assumptions.

The reason some multi-field models of inflation can give rise to local non-Gaussianity

of the curvature perturbation is that there can be a non-linear transfer of superhorizon

Gaussian or non-Gaussian isocurvature perturbations of an additional field into the

adiabatic density perturbations. Since this typically occurs on superhorizon scales, it

is local in real space, correlating large and small scale Fourier modes.

Equilateral: This shape can arise in single-field inflationary models with higher-

derivative interactions in the inflaton Lagrangian, i.e. non-canonical kinetic terms.

Note that derivative interactions are suppressed when one scale is far outside the hori-

zon, and so we expect these derivative interaction non-Gaussianities to be small in

the squeezed configuration and hence we expect them to peak close to the equilateral

configuration k1 = k2 = k3. This is indeed the case for the equilateral template. From

4assuming a Bunch-Davies initial state and that the classical solution is a dynamical attractor [83,84].
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Shape ISW-lensing subtracted (68%)

f local
NL 0.8± 5.0

f equil
NL −4± 43

fortho
NL −26± 21

Table 2: Results for the fNL parameters of the primordial local, equilateral, and or-
thogonal shapes, from Planck 2015 [85].

the higher-derivative interactions one can associate a sound speed with which pertur-

bations propagate - this sound speed is often related to the amplitude via f equil
NL ∼ c−2

s ,

and hence for small sound speeds, the equilateral non-Gaussianity can be large.

Orthogonal: This shape also arises in single-field inflationary models with higher-

derivative interactions, and is orthogonal to both the equilateral and local shapes, where

the dot product between two bispectra shapes is defined as

B1 ·B2 ≡
∑
~ki

B1(k1, k2, k3)B2(k1, k2, k3)

P1P2P3
(2.83)

where the sum is taken over all physical closed triangles in momentum space. This is

a sum for a finite number of observations or an integral for theoretical calculations.

The observational constraints on the fNL parameters for these shapes are shown in

Table 2. These constraints are strong, but still allow for future detections of multiple

field models, single-field models with non-canonical kinetic terms and deviations from

Bunch-Davies initial states.

Future experiments may be able to probe non-Gaussianity to even higher precision.

However, the observations from the CMB alone are now nearly at their limit, since

Silk damping washes away primordial information for multipoles above l ≈ 2000. More

modes are accessible through LSS measurements, since these galaxy surveys probe

three dimensions, rather than the two dimensions of the CMB sphere. Some current

and future surveys and their expected error on detecting fNL are shown in Table 3. It is

necessary to further understand non-linearities in the dark matter evolution in order to

take full advantage of these LSS experiments. In addition, we need a better grip on the

non-linear behaviour of the halo bias and redshift space distortions. Some recent work

towards extending to non-linear scales involves the effective theory of LSS [86–97].

Both LSS and CMB experiments are limited to scales inside {10−4−1} Mpc−1, the

upper limit coming from non-linear dynamics for LSS and Silk damping for the CMB.

We can probe smaller scales, {50 − 104} Mpc−1 using CMB spectral distortions, [98].

The µ-distortion can be used to constrain the integrated primordial power spectrum

over this range of very small scales. Further, cross-correlations between the temperature

anisotropy on large scales and the µ-distortion on very small scales can be used to

probe the squeezed limit of the primordial bispectrum. The autocorrelations of the µ-
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Survey σ(fNL)

SDSS LRG 5.62

BOSS 3.34

Big-BOSS 2.27

HETDEX 3.65

CIP 1.03

EUCLID 0.92

WFIRST 1.11

Table 3: Current and future LSS surveys. Adapted from [29].

distortion can be used to probe the primordial trispectrum on very small scales. See [99]

for recent work on this. These might be detectable with future experiements such as

PIXIE [100] and PRISM [101].

2.3.6 Alternatives to Inflation

There are a number of alternatives to the inflationary paradigm, including, but not

limited to, String Gas Cosmology, Cosmic Strings, Bouncing Models, Varying Speed of

Light Models, and Ekpyrotic/Cyclic Scenarios. These try to address some of the the-

oretical shortcomings of the inflationary paradigm, such as the ‘patch’ and ‘overshoot’

problems, where the initial position of the inflaton field on the inflationary potential

needs to be on a patch flat enough for inflation to occur and the initial velocity needs

to be small. In addition, inflation is geodesically incomplete towards the past, and so

is not a complete theory, and itself requires its own initial conditions. Moreover, there

is the problem of eternal inflation and the associated measure problem: for generic ini-

tial conditions, there are regions in which statistically rare, large quantum fluctuations

push the inflaton back up the potential prolonging inflation. The region that continues

inflating can dominate the volume of the universe and inflation never ends - except in

small pockets where inflation ends at random times. Because of the random nature of

these end times, these pockets where inflation has ended may or may not be sufficiently

flat to solve the horizon problem. Without a measure which determines how likely

these pockets are, it’s impossible to know what this kind of eternal inflation predicts.

However, each of these alternatives to inflation has its own problems and could

potentially be ruled out by future observations. For example, the Ekpyrotic scenario

(see [102] for a review) doesn’t predict an observably large B-mode polarization sig-

nal, whereas inflation does. If a B-mode signal is observed, this could rule out the

Ekpyrotic scenario. Similarly, Ekpyrotic scenarios generically predict a larger level of

non-Gaussianity, which currently constrains the Ekpyrotic model parameters to a small

allowed window [85].

Nonetheless, inflation remains the most developed theoretical explanation for the
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horizon problem. Some of the problems of inflation may be addressed when embedding

it in a more fundamental theory, such as string theory - a topic we turn to in the next

chapter.
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Theory - String Theory and

Inflation
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Chapter 3

Elements of String Theory for

Inflation

String theory is a major area of modern research in theoretical physics spanning a vast

literature, with the grand aim of providing a consistent theory of quantum gravity.

It is the most developed candidate theory of quantum gravity available and hence it

makes sense for us to study cosmology in string theory - although there are less well-

developed alternatives. In this chapter we don’t aim to give a full introduction to

string theory, which instead can be found in many textbooks, for example [103–105].

Instead we aim to give the bare essentials needed for studies of inflation in string theory,

with bias towards preparing the reader for Chapter 4 where a model of inflation from

branes in the warped resolved conifold is presented. Much of the introductory parts of

this chapter follow the textbooks String Theory and M-Theory [106] and Inflation and

String Theory [29].

3.1 Actions

There are five supersymmetric string theories which are interrelated through dualities.

Here we focus just on Type IIB string theory with Chapter 4 in mind. The low energy

limit of Type IIB string theory is a ten-dimensional supergravity theory, with effective

action, in Einstein frame, given by

SIIB =− 1

2κ2
10

[∫
M10

d10X
√
|g|

(
R− |∂τ |2

2(Imτ)2
− |G3|2

2Imτ
− |F̃5|2

4 · 5!

)
+

1

4i

∫
M10

C4 ∧G3 ∧G3

Imτ

]
(3.1)

Here, the NS-NS 2-form is B2 with field strength H3 = dB2 and the R-R forms present

in Type IIB are C0, C2 and C4 with field strengths F5 = dC4, F3 = dC2. These give
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the following combination of forms and field strengths,

F̃5 ≡ F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3, G3 ≡ F3 − τH3 (3.2)

where the axiodilaton is τ = C0 + ie−Φ, with Φ the dilaton. Here κ10 = 1
2(2π)4gsl

4
s ,

with ls the string length (related to α′ via l2s = α′) and gs the string coupling. We must

impose self duality of F̃5 = ?10F̃5 by hand.

In addition to strings, string theory also contains higher-dimensional objects. Dp-

branes are p+ 1-dimensional objects charged under the Cp+1 R-R field via the electric

coupling, known as the Chern-Simons term,

SCS = iµp

∫
Σp+1

∑
n

Cn ∧ eF (3.3)

where Fab ≡ Bab + 2πα′Fab, where Bab is the pullback of the NS-NS 2-form to the Dp-

brane worldvolume, Σp+1. Here µp is the brane charge, related the Dp-brane tension,

Tp, via µp = gsTp, where the tension is

Tp =
1

(2π)pgs(α′)(p+1)/2
. (3.4)

The sum in (3.3) runs over all R-R forms and only combinations which are p+ 1-forms

contribute to the integral. This is a higher-dimensional generalization of the coupling

of a charged point particle to a gauge potential.

The low energy effective action for D-branes is the DBI action in Einstein frame

SDBI = −Tp
∫

Σp+1

dp+1σ
√
−det(Gab + Fab) (3.5)

where the metric and 2-form are pullbacks onto the brane worldvolume. The complete

bosonic action for Dp-branes is then

SDp = SDBI + SCS . (3.6)

3.2 Compactifications

Solutions of string theory, also known as a string theory vacua, are solutions to the

equations of motion of the effective theory, leading to a worldsheet theory without

anomalies. For critical superstring theory, a geometric solution has a ten-dimensional

spacetime, M10, with coordinates XM .

In cosmology we are interested in a 4D spacetime, M4 with coordinates xµ, so we
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consider a compactification of string theory

M10 =M4 × Y6 (3.7)

for Y6 a compact manifold with coordinates ym.

In a vacuum compactification, with no sources of stress-energy, the metric on M10

can be split as a direct product on the spaces

ds2
10 = ηµνdx

µdxν + gmndy
mdyn, (3.8)

and since this is a 10D vacuum solution, we must have Rµν = Rmn = 0.

However, the equations of motion can admit non-vacuum solutions, since the ten-

dimensional action contains more fields than just the metric, each of which contributes

stress-energy. These non-vacuum solutions contain sources that can give rise to warped

compactifications with a warped product metric

ds2
10 = H−1/2(y)gµνdx

µdxν +H1/2(y)g̃mndy
mdyn, (3.9)

where H(y) is the warp factor, and now g̃mn is not necessarily Ricci-flat. We can get

to a 4D effective theory by exploring one of the following options:

Kaluza Klein Compactification: We can compute the 4D effective action by per-

forming a Kaluza Klein reduction on the 10D action. As long as the size of the extra

dimensions is much smaller than the lengthscale of the experiment performed at low

energy, these extra dimensions can’t be seen, but there are important effects from their

topology on the spectrum and symmetries of the 4D theory.

Brane-World Scenario: We can identify the four large dimensions with a brane

embedded in a 10D spacetime. Warping can lead to interesting hierarchies, like the

Randall-Sundrum scenario [107].

We focus in this thesis on the Kaluza Klein picture.

Supersymmetric Compactifications

Type IIB string theory has (2, 0) supersymmetry (SUSY) in 10D, which is maximal,

with 32 supercharges. We hope that the 4D effective theory from a string compactifi-

cation inherits some SUSY for a number of reasons:

• The hierarchy problem of the standard model: N = 1 SUSY at high energy in the

4D theory, broken at some scale above the standard model energy scale, would

alleviate the hierarchy problem of the standard model, and so protect the Higgs

mass.

• SUSY ensures the three gauge couplings of the standard model converge at the
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GUT scale.

• Calculations are a lot simpler for N = 1 SUSY. Second order equations of motion

become first order with the constraints of SUSY.

Compactifying on a highly symmetric space preserves the maximal N = 8 SUSY in the

4D theory, which is phenomenologically unrealistic. More attractive are compactifica-

tions on a Calabi-Yau three-fold (CY) which preserves one quarter of the supersymme-

tries of the 10D theory, which for Type IIB gives N = 2 SUSY in 4D. Note that N = 2

SUSY in 4D at low energies would be unrealistic, as it doesn’t allow chiral fermions,

but we can orbifold down from N = 2 to N = 1 SUSY as desired - more details on this

can be found in Inflation and String Theory [29] and references therein.

We digress briefly now on the main ingredients of N = 1 supergravity in four di-

mensions that will be useful throughout this chapter, before looking in more detail at

Calabi-Yau manifolds. The bosonic field content of four-dimensional N = 1 supergrav-

ity is the metric, gauge potentials and complex scalars Φi. The low-energy theory of

the scalars is captured by the superpotential W (Φi), a holomorphic funtion of the Φi,

and the Kähler potential K(Φi, Φ̄i), a real analytic function of the Φi. Neglecting gauge

interactions, the scalars have the Lagrangian

L = −Kij̄∂
µΦi∂µΦj̄ − VF (3.10)

where VF = eK/M
2
p

(
Kij̄DiWDj̄W −

3

M2
p

|W |2
)
. (3.11)

Here Kij̄ = ∂i∂j̄K is the Kähler metric, Kij̄ its inverse, and DiW = ∂iW+
1

M2
p

(∂iK)W .

The superpotential and Kähler potential can be calculated from the ten-dimensional

compactification as we will see in a later section.

Calabi-Yau Compactifications

In order to define a Calabi-Yau three-fold, we need the following definitions:

A complex n-manifold is a real 2n-manifold with real coordinates ym,m =

1, 2, ..., 2n and complex coordinates za, a = 1, 2, ..., n, with conjugates za, such that

the transition functions are biholomorphic and there exists a tensor, I, with compo-

nents in complex coordinates:

Iba = iδba, I b̄ā = −iδb̄ā, (3.12)

I b̄a = 0 = Ibā. (3.13)

If we are given a real 2n-manifold, then it’s a complex manifold if the real manifold
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admits a tensor Imn satisfying the following two properties

InmIpn = −δpm (3.14)

Np
mn ≡ Iqm∂[qI

p
n] − I

q
n∂[qI

p
m] = 0, (3.15)

then I is called the complex structure.

A Hermitian manifold is a complex manifold with a Riemannian metric gmn such

that

gab = 0 = gāb̄ (3.16)

A Kähler manifold is a Hermitian manifold on which the Kähler form, J , defined

by

J ≡ igabdz
a ∧ dz̄b (3.17)

is closed

dJ ≡ (∂ + ∂̄)J = 0. (3.18)

Then, locally, we must have

gab̄ = ∂a∂̄b̄K (3.19)

where K(z, z) is called the Kähler potential, and J = i∂∂K.

A Calabi-Yau three-fold (CY), Y6, is a complex 3-manifold (real 6-manifold),

which is compact and Kähler, which also satisfies one (equivalently all) of the following

conditions

• Y6 is Ricci flat,

• Reduced holonomy : Hol(Y6) ⊆ SU(3) . A generic 3-fold has Hol(Y6) = SU(4),

• Vanishing first Chern class, c1 = 0,

• The manifold admits a holomorphic (3, 0)-form: Ω = f(zi)dz1 ∧ dz2 ∧ dz3,

• There are other more technical definitions involving fibre bundles (see, for exam-

ple, Nakahara [108]).

Note that the above conditions are equivalent for a Kähler 3-manifold. It is not known

whether the number of topologically distinct, compact CY’s is finite. Examples include

submanifolds of complex projective spaces, e.g a quintic hypersurface in CP 4. However,

we don’t know the explicit form of the metric on any compact CY. In our study of
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inflation in string theory, we will require the metric and as such, we will look to conifolds

- non-compact cousins of CYs - on which we know the metric. We will study these

conifold spaces in depth later. For now we look at moduli, which arise as deformations

of CYs.

Deformations of Calabi-Yau spaces

We can relate different CYs by smooth deformations of the parameters which give their

shape and size. These parameters are called moduli. The moduli parametrize the space

of possible expectation values of massless scalar fields in 4D. These are undetermined

because they feel no potential, i.e. the effective potential is independent of these moduli.

There are two types of continuous deformations of Y6 to consider:

1. Deformations of the p-form fields, giving rise to bp moduli fields, where bp is the

p-th Betti number of the manifold. These deformations give rise to axion moduli.

2. Metric deformations of the 10d metric gMN gives a 4d metric gµν and a set of

massless scalar fields coming from the internal coordinates ym. There will also

be moduli from fluctuations of the 6D internal metric gmn.

Call E(Y6) the internal moduli space: i.e. the part of the moduli space depending on

deformations of the internal 6D metric gmn on Y6. Consider fluctuations, δgmn, of the

internal 6D metric gmn, which satisfy

Rmn[g + δg] = 0, (3.20)

so that we are deforming to another CY. Equation (3.20) leads to a set of differential

equations for δgmn. The coefficients of the independent solutions to these equations are

the moduli. These equations for δgmn decouple into pure components δgab and mixed

components δgab. This means that E(Y6) itself contains two types of moduli:

• The complex-structure moduli, which are deformations of the complex-structure

Imn on Y6. These correspond to non-zero δgab (and δgab), since deforming the

complex-structure allows for these. The new manifold can be Hermitian because

as well as adding pure type perturbations, one also deforms the complex structure

in such a way that new coordinates on the manifold are such that Hermiticity

holds.

• The Kähler moduli which are deformations of the complexified Kähler form J ≡
B + iJ on Y6. Here B is the compactified NS-NS two-form, which is a (1,1)-form

Bab on Y6. These deformations correspond to non-zero δgab, since the Kähler

form is J = igabdz
a ∧ dz̄b.
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From the decoupling of the CY equations (3.20), the internal moduli space E(Y6)

locally factorizes into a space of complex-structure moduli, C2,1(Y6) , and a space of

Kähler-structure moduli, K1,1(Y6)

E(Y6) = C2,1(Y6)×K1,1(Y6). (3.21)

Finally, let’s explicitly write down the moduli of each of these spaces.

Complex-structure moduli – For the complex-structure moduli space, C2,1(Y6), the

deformations δgab (and similarly for δgab ) can be written

δgab = − 1

||Ω||2
ζI(x)[χI ]cdbΩa

cd
where ||Ω||2 ≡ 1

3!
ΩabcΩ

abc
(3.22)

where Ω is the CY holomorphic (3, 0)-form; the {χI , I = 1, ..., h2,1} are a basis for

the Dolbeault cohomology group H2,1(Y6), with Hodge number h2,1, formed of the

harmonic (2, 1)-forms χI

χI =
1

2
[χI ]abc dz

a ∧ dzb ∧ dzc with [χI ]abc = −1

2
Ωd
ab

∂gcd
∂ζI

, (3.23)

and the ζI(x) are local coordinates on the complex structure moduli space C2,1(Y6),

i.e the complex-structure moduli – they are scalar fields from the four-dimensional

perspective.

Kähler moduli – For the Kähler moduli space, K1,1(Y6), the deformations δgab and

δBab can be combined into deformations of the complexified Kähler form J and written

δJ = tα(x)ωα (3.24)

where the {ωα, α = 1, ..., h1,1} are a basis of harmonic (1, 1)-forms for H1,1(Y6), with

Hodge number h1,1, and the tα(x) are a set of h1,1 four-dimensional massless scalar

fields - the Kähler moduli.

Axions – The original QCD axion is a pseudoscalar field which enjoys the continuous

Peccei-Quinn shift symmetry a 7→ a+const. which is broken to a discrete shift symmetry

a 7→ a+2π by the effects of QCD instantons through a coupling of the axion to the QCD

instantons. In string compactifications, there are moduli (in addition to the complex-

structure and Kähler moduli above), called Axions, (referred to also as closed-string

axions) which come from compactifying the gauge potentials of the NS-NS and R-R

form fields. For example, one can expand the ten-dimensional R-R 2-form C2 into a

basis of harmonic (1, 1)-forms for H1,1(Y6),

C2 = C2(x) + cα(x)ωα (3.25)
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where C2(x) is a four-dimensional 2-form and cα(x) are the axion moduli. Classically,

the axions have a continuous shift symmetry c 7→ c+const. (where we drop the index α)

inherited from the gauge symmetry of the ten-dimensional p-forms from which they are

compactified. This continuous shift symmetry holds to all orders in perturbation theory,

but is spontaneously broken to a discrete shift symmetry, c 7→ c+2π, by quantum non-

perturbative effects such as worldsheet instantons and Euclidean D-branes wrapping

cycles in the higher dimensional spacetime.

The above three types of moduli are closed string moduli. There are also open

string moduli, such a Dp-brane position moduli – these will be of central importance

in Chapter 4.

3.3 Moduli Stabilization

Some of the closed string moduli arising from CY compactification in type IIB string

theory were discussed earlier. For a generic CY, there will be many moduli. This is

both a blessing and a curse. One may hope that one of these moduli is a candidate for

our inflaton field, as it has a completely flat potential. However, one must then also

account for the many other moduli. The many complex-structure moduli and Kähler

moduli need to be stabilized, since the positive vacuum energy during inflation tends

to drive these moduli along directions which reduce the vacuum energy, and abruptly

end inflation.

For single-field inflation we then have a delicate balancing act to perform: stabilizing

many moduli, while allowing for one flat direction to inflate from. We need to find vacua

(solutions of string theory) in which all of the moduli have positive mass squared, where

these masses are large compared to the mass of the inflaton. In the following section

we look for leading contributions to the moduli potential.

We note here that multiple-field models of inflation are generically expected from

string compactifications - most constructions which stabilize some moduli while keeping

one light for inflation will generically keep a whole family of fields light by a similar

process. However, the majority of top-down string theory models of inflation aim to

model inflation as a single-field low energy model.

Flux Compactifications

One can fix the complex-structure moduli and the dilaton at the classical level using

so-called flux compactifications. Following the seminal work of [109], these warped

geometries arise naturally when local brane sources are present, and fluxes are non-

trivial. Compactifications on such backgrounds are known as flux compactifications.

At leading order in α′ and gs, the type IIB action for bosonic fields, together with
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local sources, is given in the Einstein frame as

S = SIIB + Sloc (3.26)

where SIIB is the IIB action, (3.1), and Sloc is the action for the local sources, formed

from actions of the type (3.6).

We assume a warped background metric ansatz

ds2 = e2A(y)gµνdx
µdxν + e−2A(y)g̃mndy

mdyn. (3.27)

We have a maximally symmetric external 4D spacetime, M4, with metric gµν(x) and

an internal unwarped space Ỹ6 with metric g̃mn(y). The warp factor is denoted H(y) ≡
e−4A(y). We denote the warped internal 6D space without a tilde Y6, with warped metric

gmn = H(y)1/2g̃mn. Here, and in what follows, a tilde denotes use of the unwarped 6D

metric g̃mn (except for F̃5, which is just conventional notation in supergravity). Note

that if the warp factor is shifted by a constant, this can be absorbed into a rescaling of

the xµ coordinates, so that only the functional dependence of H(y) is important.

For F̃5 we take the ansatz

F̃5 = (1 + ?10) dα(y) ∧
√
−det gµνdx

0 ∧ dx1 ∧ dx2 ∧ dx3. (3.28)

Similarly to the warp factor, shifts of α(y) by a constant are irrelevant for F̃5.

The inclusion of local sources, such as D-branes, leads to a non-trivial warp factor,

producing a warped metric, together with non-vanishing fluxes. Varying the action

leads to the Bianchi identity [109]

dF̃5 = H3 ∧ F3 + 2κ2
10T3 ?6 ρ

loc
3 (3.29)

where ?6 is the hodge dual in the warped 6D internal space with metric gmn. Here

ρloc
3 is the D3-brane charge density from the local sources. Using the warped spacetime

(3.27), and the 5-form flux (3.28), the Bianchi identity (3.29) becomes

∇̃2α = ie2AGmnp ?6 G
mnp

12Imτ
+ 2e−6A∂mα∂

me4A + 2κ2
10e

2AT3ρ
loc
3 (3.30)

with ∇̃2 the Laplacian with respect to the unwarped internal 6D metric. The trace of

the Einstein equations can be written [109], [110],

∇̃2e4A = R4 +
κ2

10

2
e2AJ loc + e2AGmnpG

mnp

12Imτ
+ e−6A(∂mα∂

mα+ ∂me
4A∂me4A) (3.31)
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where

J loc ≡ 1

4

(
9∑

M=4

T loc
M
M −

3∑
M=0

T loc
M
M

)
. (3.32)

Note that the local stress-energy tensor T loc
MN is contracted using the full 10D metric.

The 4D Ricci scalar R4 is not present when the external spacetime is taken to be

Minkowski [109], but in the case of inflation, we take the external 4D spacetime to be

quasi-de Sitter, with R4 ≈ 12H2 [110]. We can combine (3.30) and (3.31) to give

∇̃2Φ− = R4 +
e8A(y)

6Imτ
|G−|2 + e−4A(y)|∂Φ−|2 + 2κ2

10e
2A(y)(J loc − T3ρ

loc
3 )

where Φ− ≡ e4A(y) − α(y), G− ≡ ?6G3 − iG3.

(3.33)

Note that Φ− is insensitive to constant shifts.

For the time being, we work in the noncompact warped volume limit for the internal

geometry, vol(Y6)→∞. But the warped volume is related to the reduced Planck mass

Mp by

M2
p =

vol(Y6)

κ2
10

(3.34)

so that Mp → ∞ in this noncompact limit. Then by the Friedmann equation, H2 =

V/(3M2
p ) → 0, so that the Ricci scalar for dS space vanishes R4 → 0. We will later

consider corrections from taking the compact limit with finite Mp. In the noncompact

limit, (3.33) becomes

∇̃2Φ− =
e8A(y)

6Imτ
|G−|2 + e−4A(y)|∂Φ−|2 + 2κ2

10e
2A(y)(J loc − T3ρ

loc
3 ). (3.35)

Many well-understood local sources satisfy a BPS-like condition J loc ≥ T3ρ
loc
3 . D3-

brane sources saturate this, while D5-branes satisfy but don’t saturate it. Integrating

(3.35) and assuming no boundary contribution at infinity, the LHS will vanish as it’s

a total derivative. But since each term on the RHS is positive semi-definite, each

must individually vanish at leading order, giving an imaginary self-dual (ISD) solution

G− = 0 and Φ− = 0.

The four-dimensional effective description of an ISD flux compactification can also

be derived from a four-dimensional Kähler potential and a four-dimensional Gukov-

Vafa-Witten flux superpotential, W , of N = 1 supergravity [111]

K = −2 log(V)− log(−i(τ − τ̄))− log(−i
∫
Ỹ6

Ω ∧ Ω̄), (3.36)
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W =

∫
Ω ∧G3 , (3.37)

where Ω is the holomorphic 3-form associated to the Calabi-Yau. N = 1 supersymmetry

is preserved if G3 is a primitive (2, 1)-form [109].

Note that the Kähler potential is of no-scale type∑
i,j̄=tα

Kij̄∂iK∂j̄K − 3 = 0. (3.38)

Since G3 depends on the axiodilaton and Ω depends on the complex-structure moduli,

(3.37) is independent of the Kähler moduli. Since the Kähler potential is of no-scale

type, the resulting scalar potential, VF , stabilizes only the complex-structure moduli

and axiodilaton. The Kähler moduli are assumed lighter than the complex-structure

moduli and axiodilaton, and so once these heavier moduli have been integrated out, the

Kähler moduli can then be stabilized by another mechanism, which we come to later.

To see how the fluxes stabilize the complex structure moduli, let’s define the fol-

lowing basis of 3-cycles AI , BJ for I, J = 0, ..., h2,1 on the complex structure moduli

space, C2,1(Y6), where

AI ∩BJ = −BJ ∩AI = δIJ and AI ∩AJ = BI ∩BJ = 0. (3.39)

One can then choose to turn on quantized F3 or H3 (2, 1)-form fluxes through the

A,B cycles, for example,

1

2πα′

∫
A
F3 = 2πM and

1

2πα′

∫
B
H3 = −2πK. (3.40)

These fluxes allow for the superpotential to be written in terms of the complex structure

moduli. Since SUSY is preserved, one can minimize the scalar potential by imposing the

vanishing of the derivative of the superpotential with respect to the complex structure

moduli, which stabilizes the complex structure moduli values at the minimum.

In a flux compactification with non-zero G3, the complex-structure moduli ζA(x)

and the axiodilaton τ experience a potential, coming from the following term in the

10D type IIB action (3.1)

Vflux =
1

2κ2
10

∫
d10X

√
|g|
[
−|G3|2

2Imτ

]
. (3.41)

However, at leading order in α′ and gs, the Kähler moduli have vanishing potential.

Also, the vacuum energy is zero, not positive, as would be hoped for in an inflationary

model.

Quantum perturbative corrections (see e.g. [112, 113]) and non-perturbative cor-
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rections (e.g. from gluino condensation [114–119]) to the effective four-dimensional

supergravity potential can provide a potential for the Kähler moduli, but this will lead

to an AdS vacuum with negative vacuum energy. This needs to be made positive for

inflation, so we require an uplifting mechanism, which may require the inclusion of

anti-D-brane sources. The two leading ideas for Kähler moduli stabilization are the

KKLT scenario [120] and the Large Volume Scenario [121]. The KKLT mechanism

relies on a balance between the classical flux superpotential with fine-tuned fluxes to

make this contribution comparable in size to the non-perturbative superpotential. The

LVS mechanism consists of regions of Kähler moduli space where some cycles are ex-

ponentially fine-tuned to be larger than others, allowing for a balance of the leading α′

correction with the non-perturbative superpotential. Here we don’t go into the details

of either of these constructions or the uplifting mechanism, referring the reader instead

to [29] and references therein.

3.4 Conifolds

Moving away from moduli stabilization, we now go into more detail on the geometry of

conifolds. As was mentioned earlier, the metric on a compact Calabi-Yau (CY) is not

explicitly known – though progress has been made numerically, for example in [122,123].

If we wish to study physics on CY spaces, we need the metric to do calculations.

But we do know the explicit metric on a certain class of non-compact CY’s, called

conifolds, which are intimately related to their compact CY cousins. Conifolds are

similar to manifolds, except they can contain conical singularities.

Being non-compact, conifolds aren’t the whole story for a compactification. In order

to compactify, one cuts off the conifold at some finite length and glues it onto a bulk to

form a Calabi-Yau. The metric on the bulk is not specified and the analysis is restricted

to local physics done in the conifold region.

Conifold singularities of the moduli space

Note that there is room for confusion here - to be clear, let’s emphasize that we will

find that the moduli space of CY’s can have singularities corresponding to conifold

spaces. A particular conifold space itself can in general have conical singularities and

is non-compact.

To see the relation between conifolds and CY’s, note that when we compactify we

are interested in the classical low energy effective action, in which the heavy fields

have been integrated out. The moduli spaceM(Y6) of CY’s contains singularities, that

is, points where the classical low energy effective action description breaks down. An

example of such a singularity is a conifold singularity. To describe this we need special
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coordinates, XI , on C2,1(Y6) where

XI =

∫
AI

Ω. (3.42)

We then take the complex structure moduli ζI = XI/X0.

The conifold singularity occurs when one of the special coordinates on C2,1(Y6), e.g.

X1, vanishes, and the metric on C2,1(Y6) develops a curvature singlarity - which we

call a conifold singularity.

The conifold singularity arises because the classical low energy effective action

breaks down near the conifold singularity point as certain massive states that were

integrated out actually become light, so it is inconsistent to integrate these out. The

states are Euclidean D3-branes wrapping certain 3-cycles called special Lagrangian cy-

cles (more details in [106]).

Topologically equivalent CY’s live within a certain section of the CY moduli space.

Sections of the CY moduli space for topologically distinct CY’s abutt on each other,

connected at conifold singularity points. Topologically distinct CY’s can be connected

to one another by finite-length curves in the moduli space, which pass through a conifold

singularity [124–127].

In order to pass smoothly through one of these conifold singularities in the moduli

space, it is necessary to smooth out the conical singularities of the conifolds themselves,

which can be done in two distinct ways: resolution and deformation.

But since the conifold singularity is not a bone-fide part of the moduli space, it’s

not constrained to be compact - in fact, it corresponds to a conifold space, which is

non-compact.

Since the conifold singularity occuring in the moduli space of compact CY’s cor-

responds itself to a non-compact CY, it is most convenient to smooth out the moduli

space conifold singularity in the moduli space of non-compact CY’s. This is like excis-

ing a small ball in the vicinity of the conifold singularity of the moduli space of compact

CY’s and replacing it with the moduli space of non-compact CY’s. Now, in the vicinity

of the conifold singularity in moduli space, we can smooth out our singularity using

the resolution or the deformation of the conifold.

To see how the smoothing works, we begin with the Singular Conifold, labelled M ]

(sharp for singular), which is the non-compact CY associated to the conifold singularity

of the moduli space. We’ll find that M ] is the transition point linking two topologically

distinct smooth non-compact CY’s (see Fig. 5): the resolved conifold, RC, and the

deformed conifold, DC. We’ll now give details of each of these geometries in turn.
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Figure 5: Left to right: deformed conifold DC (with an S3 at the tip), singular conifold
M ] (with a sharp tip) and resolved conifold RC (with an S2 at the tip).

3.4.1 The Singular Conifold M ]

We’ll give descriptions of the singular conifold space using a few different coordinate

systems, to enable us to see the connection to the resolved conifold and the deformed

conifold more easily.

wi Coordinates: We can locally describe the singular conifold M ] in complex co-

ordinates wi, i = 1, ..., 4, where each wi is a vector ∈ C4, as the cone given by the

following equation

4∑
i=1

(wi)2 = 0. (3.43)

Note that this describes a (complex) cone, as if ~w is a solution, then so is α~w, for α ∈ C
so that the space consists of complex lines through the origin.

Let r be the (real) radial coordinate on the cone. The base of the cone is defined to

be the manifold given by the intersection of the solution space of (3.43) with a sphere

of radius r in C4:

4∑
i=1

|wi|2 = r2. (3.44)

The base is topologially S3 × S2. To see this, let ~w = ~x + i~y, and we look at the real

and imaginary parts from the equations (3.43) and (3.44), giving

~x · ~x =
r2

2
~y · ~y =

r2

2
~x · ~y = 0. (3.45)

The first equation describes an S3. For each point ~x of this S3, the third equation
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restricts ~y to be a 3-vector, which, in combination with the second equation defines an

S2. The base is then an S2 fibred over an S3, which must be trivial, so that the base is

topologically just S3×S2. Finally, since it is a cone, the singular conifold has a conical

singularity at wi = 0.

We emphasise that the moduli space of CY’s has conifold singularities, while the

associated non-compact CY associated to such a point in the moduli space itself has

a conical singularity - an important distinction that is muddled by confusingly similar

terms!

(X,Y, U, V ) Coordinates: The singular conifold can alternatively be described by

complex coordinates (X,Y, U, V ) subject to

detW = XY − UV = 0 (3.46)

TrW †W = r2 (3.47)

where the coordinates are related to the wi via

W =

(
X U

V Y

)
=

(
w3 + iw4 w1 − iw2

w1 + iw2 −w3 + iw4

)
. (3.48)

(3.46) is one complex condition on C4, and so describes a 3-complex dimensional space.

The conical singularity is now at (X,Y, U, V ) = (0, 0, 0, 0).

(X,Y, U, V, λ1, λ2) Coordinates: Away from (X,Y, U, V ) = (0, 0, 0, 0), this space can

be equivalently defined on the coordinates (X,Y, U, V, λ1, λ2) ∈ C4×PC1 (here PC1 is

complex projective space) subject to the restriction(
X U

V Y

)(
λ1

λ2

)
=

(
0

0

)
, where (λ1, λ2) 6= (0, 0). (3.49)

Recall that since (λ1, λ2) ∈ PC1, we can’t have both λ1 = 0 and λ2 = 0. This

is two complex conditions on 5 complex coordinates, giving a 3-complex dimensional

space. The description in these coordinates breaks down at the conical singularity

(X,Y, U, V, λ1, λ2) = (0, 0, 0, 0, λ1, λ2).

(Ai, Bj) Coordinates: We can solve the cone equation for the singular conifold

detWij = 0 (3.50)

by introducing four new complex coordinates Ai, Bj , i = 1, 2 and j = 1, 2 with

Wij = AiBj . (3.51)

This is because Wij is a 2 × 2 matrix with vanishing determinant, so it must be rank
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one, and so can be decomposed as (3.51) for unconstrained Ai, Bj . But in order to

satisfy the base equation (3.47) we require

A†iAiB
†
jBj = (|A1|2 + |A1|2)(|B1|2 + |B1|2) = r2. (3.52)

But we can obtain the same Wij if we rescale

Ai 7→ λAi and Bj 7→ λ−1Bj for λ ∈ C∗. (3.53)

Away from the conical singularity, we can choose to fix λ by demanding

|A1|2 + |A2|2 − |B1|2 − |B2|2 = 0. (3.54)

The base equation (3.52) now becomes

|A1|2 + |A1|2 = r = |B1|2 + |B1|2. (3.55)

But since the definition of Wij given in (3.51) is invariant under

(Ai, Bj) 7→ (eiαAi, e
−iαBj), (3.56)

for the same α, we should make the following identification

(Ai, Bj) ∼ (eiαAi, e
−iαBj). (3.57)

This means the base is given by the coset space

T 1,1 =
SU(2)× SU(2)

U(1)
. (3.58)

The equations (3.55) and (3.51) enjoy a global SU(2) × SU(2) symmetry, with one

SU(2) acting on the left of Ai and the other SU(2) acting on the right of Bj

Ai 7→ LikAk and Bj 7→ BlR
†
lj . (3.59)

There is also a global U(1) symmetry acting as (Ai, Bj) 7→ eiR/2(Ai, Bj). From this we

see that the global continuous symmetry group of T 1,1 is SU(2)× SU(2)× U(1).

(r, ψ, θ1, φ1, θ2, φ2) Coordinates: We can describe the singular conifold with coordi-

nates (r, ψ, θ1, φ1, θ2, φ2), in which the metric on the singular conifold can be written
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rather simply [128]

ds2
M] = dr2 + r2

1

9

(
dψ +

2∑
i=1

cos θidφi

)2

+
1

6

2∑
i=1

(
2dθ2

i + sin2 θidφ
2
i

) (3.60)

Here r is the radial conical coordinate over the T 1,1. We see that the metric describes

a S1 fibre bundle over an S2 × S2 fibre-bundle-base, with 2ψ the coordinate on the S1

and (θ1, φ1) coordinates on one S2, and (θ2, φ2) on the other S2.

We can rewrite the angular part of the metric in the convenient basis of 1-forms

{gi}:

g1 =
e1 − e3

√
2

g2 =
e2 − e4

√
2

(3.61)

g3 =
e1 + e3

√
2

g4 =
e2 + e4

√
2

(3.62)

g5 = e5 (3.63)

where

e1 = − sin θ1dφ1 e2 = dθ1 (3.64)

e3 = cosψ sin θ1dφ2 − sinψdθ2 e4 = sinψ sin θ1dφ2 + cosψdθ2 (3.65)

e5 = dψ + cosθ1dφ1 + cosθ2dφ2. (3.66)

Then the metric is diagonal

ds2
M] = dr2 + r2

1

9
(g5)2 +

1

6

4∑
j=1

(gj)2

 . (3.67)

The conical singularity is at r = 0, and the base metric is

ds2
T 1,1 =

1

9
(g5)2 +

1

6

4∑
j=1

(gj)2. (3.68)

3.4.2 The Deformed Conifold

To get to the deformed conifold from the singular conifold we begin in wi coordinates

and replace the cone equation (3.43) with

4∑
A=1

(wA)2 = ε2 (3.69)
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for some ε ∈ R. The base is T 1,1 as before. Decomposing wi into real and imaginary

parts we get

~x · ~x+ ~y · ~y = r2 (3.70)

~x · ~x− ~y · ~y = ε2. (3.71)

For r > ε, the surfaces r = const. are S3 × S2. But the surface r = ε is just an S3 of

non-zero radius, because the S2 has shrunk to zero radius. We can continously range

to ε = 0 and reach the singular conifold.

Klebanov-Strassler [129] gave the metric for the deformed conifold. We have co-

ordinates on the deformed conifold (τ, g1, g2, g3, g4, g5), where τ is a radial coordinate

(different to r for the singular conifold) and the gi are as above. The metric is

ds2
D =

1

2
ε4/3K(τ)

{
1

3K(τ)3
[dτ2 + (g5)2] + cosh2(τ)[(g3)2 + (g4)2]

+ sinh2(τ)[(g1)2 + (g2)2]
}

where K(τ) =
(sinh(2τ)− 2τ)1/3

21/3 sinh(τ)
.

(3.72)

For large τ we can introduce a new radial coordinate r via

r2 ≡ 3

25/3
ε4/3e2τ/3 (3.73)

and then the metric tends to

ds2
D → dr2 + r2ds2

T 1,1 for large τ. (3.74)

But in the τ → 0 limit, the angular part of the metric degenerates to the metric of a

round metric on S3

dΩ2
S3 =

ε4/321/3

31/38

[
1

2
(g5)2 + (g3)2 + (g4)2

]
, (3.75)

and the other two angular directions, corresponding to the S2 fibred over the S3, shrink

like τ2.

Note that we can also use (Ai, Bj) coordinates on D, defined analagously to the

singular conifold.
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3.4.3 The Resolved Conifold

To get to the resolved conifold from the singular conifoldM ], we begin in (X,Y, U, V, λ1, λ2)

coordinates, together with a condition similar to (3.49). The space is defined as

R =

{
(X,Y, U, V, λ1, λ2) ∈ C4 × PC1|

(
X U

V Y

)(
λ1

λ2

)
= 0, where (λ1, λ2) 6= (0, 0)

}
.

(3.76)

Note that this space differs from the conifold, in that we now include (X,Y, U, V, λ1, λ2) =

(0, 0, 0, 0, λ1, λ2) as a legitimate region of our manifold. Indeed, in this region (λ1, λ2)

can take any values, and so we have a whole S2 here. Note, these coordinates for R

are not global, and only work in patch e.g. where λ1 6= 0. In this patch the solution to

(3.49) is (
X U

V Y

)
=

(
−Uα U

−Y α Y

)
(3.77)

α =
λ2

λ1
, (3.78)

which defines a 3-complex dimensional space (U, Y, α). It will be helpful to have an

equivalent description of the resolved conifold in (Ai, Bj) coordinates, defined similarly

to the singular conifold, but replacing (3.54) with

|A1|2 + |A2|2 − |B1|2 − |B2|2 = u2 (3.79)

where u ∈ R is known as the blow-up parameter. By taking u → 0 we continuously

recover the singular conifold.

The metric on the resolved conifold, R, in the 6 real coordinates (r, ψ, θ1, φ1, θ2, φ2)

(note we follow the convention that these coordinates have the same names as, but are

distinct from, the singular conifold coordinates) [130,131]

ds2
R = κ−1(r)dr2 +

1

9
κ(r)r2(dψ + cos θ1dφ1 + cos θ2dφ2)2

+
1

6
r2(dθ2

1 + sin2 θ1dφ
2
1) +

1

6
(r2 + 6u2)(dθ2

2 + sin2 θ2dφ
2
2)

where κ(r) =
r2 + 9u2

r2 + 6u2
.

Again, in the large r limit the metric will asymptote to the large r limit of the singular

conifold. But as r → 0 in R, we see that the S3 shrinks to zero size, and we are left

with an S2 of radius u.

We see that we can follow a continous path in the moduli space of non-compact
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CY’s from the non-singular deformed conifold to the topologically distinct resolved

conifold by passing through the singular conifold.

3.4.4 Gauge/Gravity Correspondence

Conifolds are important in the Gauge/Gravity Correspondence, providing further in-

sight to the AdS/CFT correspondence. For this reason they have been well studied in

string theory constructions. Before we get on to cosmological applications of conifolds,

we’ll review their importance for the gauge/gravity correspondence. Conifold geome-

tries help to generalize notions from the original AdS5×S5/CFT correspondence [132].

We are interested in compactifying on certain CY spaces Y6. Since we know the explicit

metric on the conifold, which we view as a cone over the base X5 = T 1,1, we may wish

to know about the gauge/gravity correspondence on spaces like AdS5 ×X5. This was

done in [129,130,133,134].

Original AdS5 × S5/CFT

Consider a stack of N D3 branes placed in 10D Minkowski space. The stack sources

a non-trivial background solution for type IIB supergravity. In the string frame, the

geometry is given by the warped metric

ds2 = H−1/2(r)ηµνdx
µdxν +H1/2(r)(dr2 + r2dΩ2

5) (3.80)

with warp factor

H(r) = 1 +
L4

r4
(3.81)

where L4 = 4πgsNα
′2 (3.82)

= 4πgsNα
′2 π3

vol(S5)
. (3.83)

Taking the r → 0 limit the metric becomes, with z = L2/r,

ds2 =
L2

z2
(−dt2 + d~x2 + dz2) + L2dΩ2

5. (3.84)

This is AdS5×S5, with AdS5 and S5 each of radius L. The continous global symmetry

group of AdS5 × S5 is SO(2, 4)× SU(4).

The r → 0 limit of type IIB supergravity (SUGRA) on AdS5 × S5 corresponds

to the low energy limit of a dual gauge theory. This dual gauge theory is N = 4

Super-Yang-Mills (SYM) in 4D flat space, with gauge group SU(N). Note that this is

a superconformal field theory (SCFT). It is the low energy limit of the gauge theory

living on the worldvolume of the stack of N D3’s. The SU(N) gauge theory living on
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the brane must have N = 4 Poincaré SUSY as D3-branes are 1
2 -BPS, and so break

half the total number of SUSY’s. The YM coupling is related to the string coupling

via gYM = g
1/2
s . The continuous global symmetry of the CFT has maximal bosonic

subgroup SO(2, 4)×SU(4)R, which matches the continuous global symmetry group of

the gravity side.

If we change the S5 to some X5 6= S5 we will break some of the SU(4) symmetry.

The gauge theory dual to AdS5 ×X5 must then include some breaking of the SU(4)R

symmetry.

Operators in the CFT are mapped to SUGRA modes through a matching of the

scaling dimension of the operator to the mass of the KK mode from compactifying the

SUGRA mode on S5.

Changing the S5 to T 1,1

Now we change the setup slightly, following [133, 134]. We place the stack of N D3’s

at a conical singularity in the 6D internal space, which we take to be the singular

conifold M ], a cone over the base T 1,1 which has continuous global symmetry group

SU(2)× SU(2)× U(1).

The gauge/gravity correspondence then becomes the conjecture that IIB SUGRA

on AdS5× T 1,1 is dual to the low energy limit of the worldvolume gauge theory on the

D3-branes placed at the singularity. The warped metric sourced by the stack placed at

the conical singularity is

ds2 = H−1/2(r)ηµνdx
µdxν +H1/2(r)(dr2 + r2ds2

T 1,1) (3.85)

H(r) = 1 +
L4
T 1,1

r4
(3.86)

L4
T 1,1 = 4πgsNα

′2 π3

vol(T 1,1)
(3.87)

= 4πgsNα
′2 27

16
for the singular conifold. (3.88)

More generally, a warped metric of the form

ds2 = H−1/2(r)ηµνdx
µdxν +H1/2(r)(dr2 + r2ds2

X5
) (3.89)

is called a warped throat geometry, where the throat is a cone over X5.

Going back to X5 = T 1,1, and taking again the r → 0 limit (close to the branes,

and so close to the singularity) the metric becomes,

ds2 = L2
T 1,1

(
1

z2
(−dt2 + d~x2 + dz2) + ds2

T 1,1

)
(3.90)
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with z = L2
T 1,1/r. This is the metric on AdS5×T 1,1 (which is unwarped as it’s a direct

product metric), with AdS5 of radius LT 1,1 . Similarly to the S5 case, this r → 0 limit

corresponds to the low energy limit of a dual gauge theory on the worldvolume of the

D3’s near the conical singularity. We highlight the SU(2) × SU(2) × U(1) continuous

global symmetry of T 1,1, most evident in the (Ai, Bj) coordinate description given by

Wij = AiBj in (3.51).

In this scenario, since we have compactified on a (non-compact) CY, we retain only

1/4 of the original SUSY so that in the dual gauge theory there will only be N = 1

SUSY in 4D. This dual gauge theory was constructed in [133]. It is an N = 1 SCFT

in D = 4, with continuous global symmetry group SU(2) × SU(2) × U(1)R. It is an

SU(N)× SU(N) gauge theory, coupled to:

• two chiral superfields Ãi, i = 1, 2 in the (N, N̄) rep of SU(N) × SU(N). These

also transform as a doublet under one of the global SU(2)’s.

• and two chiral superfields B̃j , j = 1, 2 in the (N̄,N) rep of SU(N) × SU(N).

These also transform as a doublet under the other global SU(2).

These fields are written in a suggestive notation to compare to the dual supergrav-

ity coordinates (Ai, Bj). Under the U(1)R R-symmetry both Ãi, B̃j have charge 1/2.

Thus, the global continuous symmetries of the dual gauge theory and the supergravity

description match.

This theory has a superpotential which is fixed up to normalization by the global

SU(2)× SU(2)× U(1)R symmetry to be

W = λ1ε
ijεkltr(ÃiB̃kÃjB̃l), (3.91)

so that W has R-charge 2, as required for a superpotential.

To show that the classical field theory describes N D3-branes moving in the singular

conifold geometry, we take the superfields to have diagonal expectation values

〈Ãi〉 = diag(a
(1)
i , ..., a

(N)
i ) 〈B̃j〉 = diag(b

(1)
j , ..., b

(N)
j ). (3.92)

These diagonal VEVS mean the F-term supergravity equations from the superpotential

for a SUSY vacuum are automatically satisfied. Define the 4N complex coordinates

n
(r)
ij = a

(r)
i b

(r)
j , for r = 1, ..., N (3.93)

which, when subject to satisfying the D-term supergravity equations, and gauge invari-

ance conditions, reduce to a system of 3N independent complex variables. For each r,
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they satisfy

det
i,j
n

(r)
ij = 0 (3.94)

which is the equation satisfied by complex coordinates on the singular conifold (3.46),

with nrij viewed as a collection of r coordinates W r
ij on the singular conifold. So the 4N

coordinates n
(r)
11 , n

(r)
12 , n

(r)
21 , n

(r)
22 , r = 1, ..., N are naturally associated with the positions

of the D3-branes on the conifold. For a stack we have just 3 complex coordinates

nrij = n̄ij for all r, (3.95)

describing the position of the stack in the singular conifold.

Positioning the stack at the conical singularity Wij = 0 corresponds to giving zero

VEVs for the fields Ãi, B̃j . This leads to the precise conjecture that type IIB string

theory on AdS5×T 1,1, with N units of R-R flux through T 1,1 is equivalent to SU(N)×
SU(N) gauge theory, with two copies of (N,N)⊕ (N,N), flowing to an IR fixed point,

(which is the conformal theory, with zero VEVs for Ãi, B̃j), and then perturbing by

the superpotential (3.91).

Deforming the Conifold

Here we outline the necessary steps in realizing the dual gauge theory to a supergravity

solution with a warped metric involving the deformed conifold as the unwarped 6D

internal space - following the work of [129].

• Begin with the unwarped singular conifold of Section 3.4.4 . The metric factorizes

into an unwarped AdS5×T 11 in the IR limit. On each side of the correspondence

this involves:

– Supergravity: placing N D3’s at r = 0 on the singular conifold.

– Gauge theory: No VEVs given to fields Ãi, B̃j . This is an N = 1 SU(N)×
SU(N) gauge theory, which is superconformal.

• Next consider the geometry of the warped singular conifold. The warped metric

is ds2 = H−1/2(r)ds2
M4

+H1/2(r)ds2
M] . On each side of the correspondence this

involves:

– Supergravity: M fractional D3-branes placed at the conical singularity, r =

0, of the singular conifold, together with N D3’s near, but not at, r = 0.

– Gauge theory: Fields Ãi, B̃j given diagonal VEVs, while detNij = 0 still

holds both classically and quantum mechanically. This is anN = 1, SU(M+

N)×SU(N) gauge theory which is no longer conformal as the superpotential
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(3.91) is turned on. There is an RG cascade to an SU(M+p)×SU(p) gauge

theory. The moduli space of such vacua is exactly M ].

• We now consider the geometry of the warped deformed conifold (WDC). The

warped metric is ds2 = H−1/2(τ)ds2
M4

+H1/2(τ)ds2
DC , for the deformed conifold.

On each side of the correspondence this involves:

– Supergravity: We have M units of 5-form flux through the S3 of the de-

formed conifold, and we’ve cascaded down to having only one D3-brane,

which is at some position (Ai, Bj) in D.

– Gauge theory: We have an N = 1, SU(M + 1) gauge theory. The fields

Ãi, B̃j are given non-zero VEVs, corresponding to the position of the D3-

brane on the SUGRA side. We have detNij = 0 classically, but when we

include quantum effects, there is chiral symmetry breaking which leads to

detNij = ε2, so that the moduli space of vacua is exactly the deformed

conifold.

Resolving the Conifold

After seeing how the deformed conifold arises naturally in the gauge/gravity corre-

spondence, we now look at the analogous picture for the resolved conifold, following

the work of [130]. Here we outline the steps in realizing the dual gauge theory to a

supergravity solution with a warped metric involving instead the resolved conifold as

the unwarped 6D internal space.

• We begin with the unwarped singular conifold, just as in the deformed case.

• We again consider the geometry of a warped singular conifold, but this time

without any fractional D3-branes. The warped metric is ds2 = H−1/2(r)ds2
M4

+

H1/2(r)ds2
M]

– Supergravity: In this case we just have a stack of N D3-branes near, but

not at, r = 0, and no fractional D3-branes, as the resolved conifold doesn’t

support three-form flux, since the S3 shrinks to zero size.

– Gauge theory: The fields Ãi, B̃j are given VEVs, but these are subject to the

operator U ≡ 1
N Tr(|B̃1|2 + |B̃2|2− |Ã1|2− |Ã2|2) having zero VEV, 〈U〉 = 0.

The moduli space of these vacua is exactly the singular conifold M ].

• We now consider the geometry of the warped resolved conifold (WRC). The

warped metric is ds2 = H−1/2(r, θ)ds2
M4

+ H1/2(r, θ)ds2
R, for the resolved coni-

fold R. On each side of the correspondence this involves
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– Supergravity: We have a stack of N D3-branes’s localized at any r on the

resolved conifold. We can place them at the north pole of the finite-radius

S2 at r = 0. Since this chooses an angle on the S2, we must now have

angular dependence, as well as radial, in the Green’s function associated to

this source, and so there is angular dependence in the warp factor.

– Gauge theory: The fields Ãi, B̃j are given VEVs and now we can have 〈U〉 =

u2 6= 0. This u2 is the resolution parameter of the resolved conifold. From

this we see the moduli space of these vacua is exactly the resolved conifold.

Thus we have seen how the warped deformed conifold and the warped resolved coni-

fold arise naturally in the gauge/gravity correspondence. This acts as motivation for

investigating models of inflation from string theory compactified using these geometries,

as we will do in Chapter 4.

3.5 String Inflation

In the previous sections of this chapter we have studied Calabi-Yau compactifications

and their associated moduli, the stabilization of these moduli and mentioned how a

de Sitter vacuum can be generated. These Calabi-Yau compactifications involve many

moduli – scalar fields in four-dimensions, which, after stabilization have very compli-

cated potentials and interactions.

This is to be contrasted with what we are intending to model - inflation - which, in

it’s simplest form requires a single field which is slowly-rolling requiring a single scalar

field with a near-flat potential. It was originally hoped that one of the CY moduli may

provide such a scalar field, but it is tricky to arrange for one of the fields to be the

inflaton, while stabilizing the others, except for in contrived scenarios.

There are the following inflaton candidates from string theory

• Brane moduli : the positions of spacetime-filling branes in the internal 6D space

can be moduli for the 4D effective theory. The positions can be time dependent,

leading to FRW expansion. The branes feel a potential through interactions with

other sources in the internal space. Controlling the brane potential to keep it

flat enough is highly non-trivial. A large range of inflationary models can be

produced from brane moduli.

• Kähler moduli : Here the inflaton is identified with time-dependent deformations

of volumes of even-dimensional cycles in the CY. Promising models have lead to

saddle-point inflation models.

• Complex-structure moduli : In type IIB, these are normally stabilized by flux

compactifications, so don’t provide a promising inflaton candidate. But in type
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IIA string theory the complex-structure moduli may be more natural inflaton

candidates.

• Axions: Compactifications lead to many axion fields, one of which could be a

candidate for the inflaton. These can potentially give rise to large field inflation,

with an observably large value for the tensor-to-scalar ratio.

The inflationary models derived from each of these candidates depends rather sensi-

tively on the details of the construction, so there may not be an easy way to distinguish

between these candidates observationally.

In this thesis we focus on using the brane moduli to give inflation. In the next chap-

ter, Chapter 4, we will explicitly construct an original model of natural inflation coming

from a brane moduli model. A complete review of inflation in string theory would re-

quire a lot more space – see the excellent book [29] for a more general presentation of

string theory and inflation.

Before moving on to Chapter 4 we say a little more about axions for inflation. The

discrete shift symmetry, due to non-perturbative quantum effects, constrains the axion

Lagrangian to be schematically

L = −1

2
f2(∂a)2 − Λ4 [1− cos(a)] + · · · (3.96)

where f is called the axion decay constant, with mass dimension one, and Λ is a

mass scale, and higher terms contain higher-order terms in derivatives and from multi-

instanton corrections which come exponentially suppressed. The canonically normal-

ized field φ ≡ fa has periodicity 2πf . Note that these axions can be used to produce

natural inflation models from compactifications, mentioned in the previous chapter.

The decay constant can be derived from dimensional reduction. For illustrative pur-

poses, an unwarped symmetric toroidal compactification on a torus with lengthscale L

produces (see for example, [29])

f2

M2
p

∼ α′2

L4
. (3.97)

We note that computational control requires the lengthscale of the compactified ge-

ometry, L, be much bigger than the string length, L � ls =
√
α′, so that the decay

constant for these closed-string axions is much below the Planck scale. This has im-

portant observational consequences, in that a Planck scale f can generate a nearly

observable level of gravitational waves. In Chapter 4 we will instead look at if a Planck

scale f can be derived in a D-brane model of natural inflation.
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3.6 The Weak Gravity Conjecture

In the final part of this section on the elements of string for inflation, we present original,

unpublished work related to the Weak Gravity Conjecture.

The Weak Gravity Conjecture (WGC) [135] amounts to the statement that gravity

is the weakest force in a theory of quantum gravity. The original arguments in favour

of the conjecture relate to avoiding a zoo of stable black hole remnants. The original

WGC involves 1-form gauge fields, and this can be generalized to p-form gauge fields

via the Generalized Weak Gravity Conjecture (GWGC).

More precisely, the four-dimensional electric version of the GWGC states that there

must exist a (p− 1)-dimensional object, with tension T , which couples electrically to a

p-form Abelian gauge field, with coupling g, such that

T <∼ gMp (3.98)

where Mp is the four-dimensional reduced Planck mass. Interpreting this, it means

that the electrostatic force between charged objects is stronger than the gravitational

force – i.e. gravity is the weakest force in this sense.

The conjecture can be used to constrain string axion models of inflation, and the

result (3.97) that we showed earlier, which bounds the decay constant of the axion

derived as the integral of a p-form over a p-cycle, can be interpreted as a result due

to the weak gravity conjecture. Here we demonstrate this following similar analyses to

[136,137], extending these works to allow for warped compactifications. The motivation

for the following computation is to see whether warping helps to avoid the weak gravity

conjecture constraints on the decay constant for closed string axions. In [138], it was

claimed that warping the weak gravity conjecture aids open-string D-brane models to

achieve a super-Planckian decay constant. As we will find out, it doesn’t help for the

closed-string axions and the effects of warping cancel out in the computation. Below

we present a short investigation into the effects of warping on the decay constant for

closed-string axion models.

Consider a ten-dimensional spacetimeM with coordinates XM , M = 0, ..., 9, which

splits into a four-dimensional spacetime, M4, with coordinates xµ, µ = 0, ..., 3 and a

six-dimensional space X6 with coordinates ym, m = 4, ..., 9.

The 10-dimensional metric takes the following warped form

ds2
10 = GMNdX

MdXN = H−1/2(y)ds2
FRW +H1/2(y)ds2

CY (3.99)

where the four-dimensional unwarped metric is FRW

ds2
FRW = g̃FRW

µν dxµdxν = −dt2 + a(t)2d~x2 (3.100)
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and the six-dimensional unwarped CY metric is

ds2
CY = g̃mndy

mdyn. (3.101)

We denote the warped four-dimensional and warped six-dimensional metrics by gFRW
µν ≡

H−1/2(y)g̃FRW
µν and gmn ≡ H1/2(y)g̃mn respectively.

One can read off the reduced Planck mass as the coefficient sitting in front of the

Einstein-Hilbert term in the type IIB bosonic supergravity action

SEH = − 1

2κ2
10

∫
M
d10X

√
−GR10 = −

M2
p

2

∫
M4

d4x
√
−gR4 (3.102)

where

M2
p =

1

κ2
10

∫
X6

d6y
√
g̃H(y) (3.103)

with κ2
10 =

1

2
(2π)7(α′)4g2

s .

The original QCD axion is a pseudoscalar field which enjoys the continuous Peccei-

Quinn shift symmetry a 7→ a + const. which is broken to a discrete shift symmetry

a 7→ a + 2π by the effects of QCD instantons through a coupling of the axion to the

QCD instantons (we follow the conventions of [137]).

We look at closed-string axions which arise in compactifications from integrating

q-form gauge potentials over q-cycles, which we denote Σq, in the compact space X, as

in [137]. The gauge symmetry lives on D(3 + q)-branes extended along the four non-

compact directions and wrapped around Σq in X. Decay constants for these axions

have previously been analysed in an unwarped setting, and here we present results

allowing for a warped compactification. In this section, we will denote the warp factor

at the position of the D(3 + q)-branes (assumed to be stationary) by h0. Dimensional

reduction of the bulk Einstein-Hilbert action gives the following expression for the

reduced Planck mass

M2
p =

1

κ2
10

∫
X6

d6y
√
g̃h(y) ≈ 4πh0ṼX

l8sg
2
s

(3.104)

where we have approximated the warped volume by the warp factor evaluated at h0

- assumed to be typical - multiplied by the unwarped volume of the six-dimensional

space, ṼX . In what follows we will assume X is a symmetric internal space, where R

is a linear scale of X, so that ṼX = xR6, with x of order one, depending on the details

of X.

In this setup, the axions enjoy a continuous shift symmetry a 7→ a + const. both

classically and at the perturbative quantum level, but is broken to a discrete shift
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symmetry a 7→ a+ 2π by quantum non-perturbative instanton effects, giving rise to a

periodic potential.

Here we present a computation of the decay constants from the ten-dimensional

theory - an alternative is to deduce them from the effective Kähler potential of the

dimensionally reduced four-dimensional theory.

The axions in the closed string sector arise from the NS-NS 2-form, B2, and R-R

q-forms, Cq, with indices along the internal directions of the wrapped q-cycle Σq. The

R-R forms appear in the bulk supergravity action as

− 2π

l8−2q
s

∫
1

2
Fq+1 ∧ ?Fq+1 + 2π

∫
Cq (3.105)

where Fq+1 = dCq and the NS-NS form appears in the bulk supergravity action with

kinetic term

− 2π

g2
s l

4
s

∫
d10X

1

2
|dB2|2 (3.106)

where we’ve followed the normalization of [137] so that our field strengths have integer

periods. The conventional form fields are related to ours by Cq,conv = lqsCq andB2,conv =

l2sB2.

The four-dimensional axions, bα(x) and cα(x), are then given via the associated

phases 2π
∫

Σ2
B2 and 2π

∫
Σq
Cq, through the expansions

B2 =
1

2π

∑
α

bα(x)ωα(y) Cq =
1

2π

∑
α

cα(x)ωα(y) (3.107)

where ωα are a basis for the cohomology class Hq(X,Z) such that
∫
Qα

ωβ = δαβ, with

Qα being a basis for the homology class Hq(X,Z), with α = 1, ...,dim(Hq(X,Z)), where

q = 2 for the b-axions.

We’ll focus for now on the c-axions, with the b-axion decay constant, fb, related to

the c-axion decay constant, fc, by f2
c = g2

sf
2
b for q = 2.

Upon dimensional reduction one finds the cα(x) axion kinetic action

Sc = −1

2

1

2πl8−2q
s

∑
α,β

∫
X
ωα ∧ ∗6(ωβ)

∫
d4x
√
gFRWg

µν
FRW∂µcα∂νcβ (3.108)

We now insert the relevant warp factors. We begin with the term∫
X
ωα ∧ ∗6(ωβ) ∼

∫
X

√(
h

1/2
0

)6 (
h
−1/2
0

)q
ωα ∧ ∗̃6(ωβ) (3.109)

∼ h3/2−q/2
0 xR6−2q (3.110)

69



CHAPTER 3. ELEMENTS OF STRING THEORY FOR INFLATION

where in the first line we included warp factors coming from the determinant and q

factors of the inverse metric that appear in the Hodge dual (note that ∗6 is the Hodge

dual with respect to the warped six-dimensional metric, ∗̃6 is the Hodge dual with

respect to the unwarped six-dimensional metric), and in the second line we assumed

that the warp factor is roughly constant over X, and used that ṼX = xR6. The

four-dimensional integral part gives∫
d4x
√
gFRWg

µν
FRW∂µcα∂νcβ = h

−1/2
0

∫
d4x
√
g̃FRWg̃

µν
FRW∂µcα∂νcβ (3.111)

so that for a typical c-axion

Sc ∼ −
1

2

h
1−q/2
0 xR6−2q

2πl8−2q
s

∫
d4x
√
g̃FRWg̃

µν
FRW∂µc∂νc (3.112)

so that the axion decay constant is

f2
c =

h
1−q/2
0 xR6−2q

2πl8−2q
s

(3.113)

and the ratio with the Planck mass is

f2
c

M2
p

=
g2
sh
−q/2
0

2π

(
ls
R

)2q

. (3.114)

For the supergravity approximation to be valid, one needs that R > ls. We can see

from this that if q > 0, the right hand side can be large if the value of h0 is small

enough.

We now consider the breaking of the continuous shift symmetry, coming from the

corresponding q-form gauge invariances of the ten-dimensional theory, to discrete shift

symmetries by non-perturbative instanton effects.

We here give a brief summary of instantons relevant for our purposes. Instantons

appear in four-dimensional gauge theories as classical solutions to the Euclidean equa-

tions of motion, obeying the self-duality condition ?4F = F , and are labelled by an

integer called the instanton number n = 1
8π2

∫
tr F ∧F . Because of the self duality, the

classical action for a gauge n-instanton is Scl,n = 8π2n/g2 = nScl,1 for gauge coupling

g. This classical solution to the Euclidean equations of motion gives a strength e−Scl,n

to the tunneling process in the Lorentzian theory.

For concreteness we focus here on the NS-NS two-form, B2, which is coupled to

a worldsheet instanton (where the string worldsheet wraps a topologically non-trivial

2-cycle Σ2). The n-instanton sector generates a potential for the axion, in which the

continuous shift symmetry is spontaneously broken to a discrete shift symmetry, with
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the potential including terms proportional to the strength

e−Scl,n = exp

(
−2πn

l2s

∫
Σ2

(J + il2sB2)

)
(3.115)

where J = igij̄dz
i ∧ dz̄j̄ is the Kähler form. This combination of J and B2 appears

because this is the complexified Kähler form with our convention for the normalization

of B2. Now we use that
∫

Σ2
J = h

1/2
0 ṼΣ2 , with ṼΣ2 the unwarped volume of the 2-cycle,

giving

e−Scl,n = exp

(
−2πnh

1/2
0 ṼΣ2

l2s

)
exp (−inb) (3.116)

where for simplicity we’ve dropped the α label and just written a single axion b. Here

one can see that for n = 1, b is now periodic with period 2π. At level n, the potential

develops substructure on scale 2π/n. For the canonical field φb ≡ fbb, the potential is

periodic with period 2πfb/n. Because of the exponential suppression, only terms with

n<∼nmax,b contribute, where

nmax,b ≡
l2s

2πh
1/2
0 ṼΣ2

. (3.117)

We now assume that ṼΣ2 ∼ R2, where R was a linear scale of X, i.e. that the 2-cycle

has the same parametric lengthscale as the enveloping space X. We now drop factors

of 2π since we are working parametrically. We use (3.114) with f2
c = g2

sf
2
b for q = 2 to

write R/ls in terms of fb/Mp, to give

nmax,b ∼
fb
Mp

(3.118)

independently of h0. Thus the potential for φb has substructure on scale 2πfb/nmax,b ∼
2πMp.

We now note two things. Firstly, even if fb > Mp, the substructure for the canonical

field is still 2πMp. Secondly, it wasn’t obvious, but this is independent of the warping.

Warping doesn’t help to make the field range larger than Mp, once instanton effects

have been taken into account.

For the c-axions a similar cancellation in warp factors occurs. This time there are

Euclidean Dq-branes wrapping non-trivial q + 1-cycles, n times, with strength

e−Scl,n = exp

(
−nTq

∫
Σq+1

dq+1x
√

det g|Σq+1

)
exp

(
−nigsTq

∫
Σq+1

Cq+1

)
. (3.119)
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The first factor contributes up to

nmax,c ∼
gsl

q
s

h
q/4
0 ṼΣq

(3.120)

We now assume that ṼΣq ∼ Rq, where R was a linear scale of X, i.e. that the q-cycle

has the same parametric lengthscale as the enveloping space X. We use (3.114) to

write R/ls in terms of fc/Mp to give

nmax,c ∼
fc
Mp

(3.121)

which again is independent of h0, and the factors of gs have cancelled out to give an

answer analogous to the b-axion. Thus the potential for φc = fcc has substructure on

scale 2πfc/nmax,c ∼ 2πMp. This same result holds for any q. For q = 2 we see the same

result for C2 as B2, which is a consequence of SL(2,Z) symmetry of type IIB string

theory [136].

To conclude, for closed-string axions warping does not help to alleviate the issue of

obtaining a potential which is flat on super-Planckian scales, due to instanton effects.

We now ask if this result can be interpreted in terms of the Weak Gravity Conjec-

ture (WGC), allowing for warping. The four-dimensional Generalized Weak Gravity

Conjecture (GWGC) states that there must be a (p− 1)-dimensional object, with ten-

sion T , which couples electrically to a p-form Abelian gauge field, with coupling g, such

that

T <∼ gMp (3.122)

where Mp is the four-dimensional reduced Planck mass.

In our case, we have a 0-form gauge field, which is the axion, and it couples to a

(−1)-dimensional object, an instanton, which has tension given by the instanton action

T = Scl,1. The coupling can be read off from dimensionally reducing the Chern-Simons

term in the D(3 + q)-brane action

2π

∫
W3+q

Cq ∧
trF ∧ F

8π2
=
∑
α

1

fc,α

∫
ΣQ

ωα

∫
M4

φc,αtrF ∧ F
8π2

(3.123)

where Cq is the background R-R form and F is the worldvolume gauge field strength,

and where W3+q is the 4 + q-dimensional brane worldvolume and M4 is the four-

dimensional spacetime. Dropping the α subscript, we see that for the canonical φc,

the coupling is 1/fc. The GWGC is then

Scl,1
<∼
Mp

fc
. (3.124)
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If we want to be able to ignore instanton contributions to the potential, then we require

a large instanton action Scl,1 � 1. The GWGC then implies that fc/Mp � 1.

Conversely, if you want fc/Mp � 1, then the GWGC implies you must have a very

small instanton action, and so there will be contributions to the potential from the

instanton effects. The scale of variation at level n is Λ = 2πfc/n, which comes with

a factor e−Scl,n = e−nScl,1 , and so we must keep up to level n ∼ S−1
cl,1, which by the

GWGC is n>∼ fc/Mp, leading to variation scale Λ<∼ 2πMp, i.e. the potential is no longer

flat on the scale 2πfc, instead there is variation on scale Λ<∼ 2πMp.

Note finally that the warping didn’t come into the GWGC argument anywhere, as

we found out in the explicit computation.

In the next chapter, Chapter 4, we will investigate whether a Planckian decay

constant can arise in a warped compactification using a d-brane as the inflaton, rather

than an axion.
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Chapter 4

D-branes in the Warped

Resolved Conifold

4.1 Introduction

This chapter contains material from Kenton & Thomas [1], titled D-brane Potentials

in the Warped Resolved Conifold and Natural Inflation, done in collaboration with my

supervisor, Steven Thomas.

In this chapter we investigate a model of natural inflation from string theory, which

can produce a value of the tensor-to-scalar ratio which may be observable by near-future

experiments.

The natural inflation model comes with a Planckian decay constant, which is un-

usual compared to many other string theory models of natural inflation, in which a

closed string axion comes with a sub-Planckian decay constant.

Since publication of these results there has been a lot of interest in this work – most

notably [138] which builds on our findings and attempts to interpret them in terms of

the Weak Gravity Conjecture.

Our model requires the investigation of D-brane dynamics in the background of

the warped resolved conifold (WRC) throat approximation of Type IIB string com-

pactifications on Calabi-Yau manifolds. When we glue the throat to a compact bulk

Calabi-Yau, we generate a D-brane potential which is a solution to the Laplace equa-

tion on the resolved conifold. We can exactly solve this equation, including dependence

on the angular coordinates. The solutions are valid down to the tip of the resolved

conifold, which is not the case for the more commonly used deformed conifold. This

allows us to exploit the effect of the warping, which is strongest at the tip.

The inflationary model occurs near the tip, using an angular coordinate of a D5-

brane in the WRC which has a discrete shift symmetry, and feels a cosine potential,

giving us a model of natural inflation. A Planckian decay constant is achieved whilst
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maintaining control over the backreaction. This is because the decay constant for a

wrapped brane contains powers of the warp factor, and so can be made large, while the

wrapping parameter can be kept small enough so that backreaction is under control.

In Section 4.2 we consider a compactification of the six extra dimensions on the

warped resolved conifold.

In Section 4.3 we apply our string theory compactification to a model of natural

inflation [8, 139–141]. In contrast to many previous studies of natural inflation from

a controlled string theory, we are able to achieve a Planckian decay constant. This is

because our axion is an open string modulus - a D-brane position modulus - rather

than a closed string axion formed from integrating a p-form over a p-cycle.

As mentioned in detail in Chapter 3, Calabi-Yau compactifications involve many

closed string moduli, including complex structure moduli, Kähler moduli and the ax-

iodilaton. It was originally hoped that one of these closed string moduli may provide

a candidate scalar field for inflation. In Type IIB supergravity, the complex structure

moduli and the axiodilaton can be stabilized classically via flux compactifications [109],

which involve a warped spacetime. The Kähler moduli are not stabilized classically and

are instead fixed by quantum perturbative and non-perturbative effects [142], [143].

In general it’s difficult to stabilize all the closed string moduli, while maintaining a

flat potential for just one or two of them, in order to give a simple inflationary model.

A more promising approach is to stabilize all the closed string moduli and then inflate

using open string brane moduli, arising from spacetime-filling branes whose coordinates

within the internal 6D space are moduli for the 4D effective theory [144]. The branes

feel a potential through interactions with other sources in the internal space. The

warping helps to keep the brane potential flat, which is desired for inflation.

Here we briefly summarise the sections on conifolds in Chapter 3. In order to study

the dynamics of branes in warped spacetimes, we require the metric on the internal

unwarped 6D Calabi-Yau space. However, no explicit metric is known on any global

compact Calabi-Yau space. The best we can do is to approximate the Calabi-Yau by

a noncompact throat region, which is Ricci flat and Kähler, and on which we know

the metric. We can then cut off the throat at a finite length and glue it on to a

compact bulk Calabi-Yau, on which the metric is unknown. Research is constricted

to obtaining inflation from D-branes confined to the warped throat region, where the

metric is known. The singular conifold (SC) is one example of a Ricci flat, Kähler

throat on which the metric is known [145]. The SC lives at a singular point within the

moduli space of Calabi-Yau manifolds. It is a cone over a T 1,1 ≡ [SU(2)×SU(2)]/U(1)

base, and so it contains a conical singularity at its tip (not to be confused with the

singular point within the moduli space). We can smooth out this conical singularity in

two topologically distinct ways, whilst preserving the Ricci flat and Kähler conditions,

leading to the deformed conifold (DC) and the resolved conifold (RC). The DC and
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RC are both noncompact, and the metric is known explicitly in each case [145–149]

and [150].

The DC is the usual choice when one is interested in stabilizing the closed string

moduli and inflating within the same throat, because the DC can support a non-trivial

(2,1)-form flux which can stabilize the complex structure moduli and the axiodilaton

while preserving supersymmetry [111,143]. This flux is also responsible for the warping

of the full 10D solution, known as the warped deformed conifold (WDC) [149]. The

DC has been used for previous examples of brane inflation in a warped throat, for

example [142].

The RC, on the other hand can’t support topologically non-trivial (2,1)-form flux.

This means the complex structure moduli and axiodilaton can’t be stabilized in the

same manner as the DC. Indeed, the RC on its own has no complex structure moduli to

stabilize, and so it is no surprise that the flux mechanism used to stabilize the complex

structure modulus of the DC is not suitable here5. However, we can still produce a

warped 10D spacetime by placing a stack of N D3-branes at the tip of the RC, extended

along the 4 noncompact spacetime directions. The resulting 10D spacetime is called

the warped resolved conifold6 (WRC) [150,155].

In this chapter we do not explicitly address the issue of closed string moduli stabi-

lization. Instead, we assume that these are stabilized by some mechanism at a higher

energy scale, decoupled from the open string brane moduli, which remain light. This

allows us to investigate the inflationary dynamics from branes in the WRC.

This assumption does not seem so strange when one remembers that the throat

region is only an approximation to a fully compactified Calabi-Yau manifold. Multi-

throat scenarios have been considered in which different throats are attached to different

parts of the bulk Calabi-Yau [156–160]. One of these other throats could support fluxes

and or other mechanisms to stabilize the closed string moduli at a high energy scale. An

additional warped throat may be necessary to embed the standard model, and another

to uplift to a dS vacuum. With this multi-throat picture in mind, we assume an RC

throat in which inflation occurs, and allow for other throats in which fluxes may be

present which stabilize the complex structure moduli. It is beyond the scope of this

thesis to investigate closed string moduli stabilization in the WRC - we focus instead

on the cosmological phenomenology of inflation in the WRC.

In Section 4.3, we model the inflaton as one of the angular coordinates of a probe

wrapped D5-brane moving within the tip region of the WRC. This angular coordinate

5 The authors of [151] have analysed SUSY breaking ISD (1,2) fluxes on the RC, which are allowed
if Poincare duality is broken either through non-compactness or through having a compact but non-CY
manifold. It would be interesting to see if this work can be extended to the case of the WRC which we
are considering.

6This is not to be confused with the similarly named resolved warped deformed conifolds of [152,153]
based on the work of [154].
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is periodic, and so has a shift symmetry, appearing in the brane potential inside a

cosine. Once rescaled to have canonical kinetic terms, it appears with a decay constant,

set by the choice of D-brane. In this way, we find a model of natural inflation from

string theory. In taking a path in field space along the angular direction, we evade the

Baumann-McAllister bound which limits the field range, and hence the tensor-to-scalar

ratio, when the motion is only in the radial direction [161].

Finally, it should be noted that this work has a more general context beyond its

application to the model of natural inflation presented in Section 4.3. The authors

of [110, 162–165] have developed a systematic programme investigating the various

corrections to the D-brane potential, corresponding to the potential on the Coulomb

branch of the dual gauge theory, for perturbations of the Lagrangian. This includes

various compactification effects, such as the deformation of the throat from gluing it to

the bulk, the inclusion of IASD fluxes and a finite 4D curvature. The approach makes

use of perturbative expansions around a Calabi-Yau background, requiring knowledge

of the eigenfunctions of the Laplace operator on the unperturbed, unwarped Calabi-

Yau background. Since the WDC has been extensively studied for moduli stabilization,

the DC geometry was used to derive explicit expressions for the D-brane potential.

However, the eigenfunctions of the Laplace operator on the DC are only known in

the region well away from the tip of the DC. Interestingly, exact analytic solutions to

the Laplace equation on the RC are known. In contrast to the DC case, these solutions

are valid anywhere within the RC [155]. Thus by studying the WRC we are able to

provide a new explicit example of the general formalism developed in [110, 162–165],

which extends deeper into the IR. Thus, aside from inflationary applications, we believe

studying D-brane dynamics in the WRC geometry is an interesting new avenue to

explore from the perspective of the holographic dual gauge theory.

This chapter is structured as follows. In Section 4.2 we review the supergravity

background arising from flux compactifications of 10D Type IIB string theory, focussing

on the various sources that can contribute to the D-brane potential. We also introduce

the geometry of the WRC. In Section 4.3 we apply this to produce a natural inflation

model from a D-brane in the WRC. We find that for the simple case of a D3-brane it’s

not possible to obtain a Planckian decay constant. Indeed, in the WDC case, it was

shown in [166] that one can generate a Planckian decay constant from a large number of

D3-branes, but the backreaction effects cannot then be ignored. By considering instead

a wrapped D5-brane with flux we find that we can choose parameters such that the

decay constant is Planckian, while the backreaction remains small. We conclude in

Section 4.4 and provide scope for future research. We gather more technical aspects,

such as estimations of the backreaction in Appendix A.1 and corrections to the potential

coming from the 4D Ricci scalar in Appendix A.2.
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4.2 D-brane Potential in the Warped Resolved Conifold

As we have stated already, we don’t know the explicit metric on any smooth compact

Calabi-Yau in 3 complex dimensions. One way forward is to approximate a region of

the fully compactified manifold with a section of a noncompact throat, which satisfies

the Ricci flat and Kähler condition, upon which we know the metric. We then cut off

this noncompact throat and glue it onto a bulk compact Calabi-Yau producing a fully

compactified geometry. If we assume that the physics we’re interested in is localised

within the throat region then we have access to an explicitly known metric. We can try

to quantify the effects of the gluing procedure via perturbative expansions, assuming

the gluing region is suitably far away.

The moduli space of Calabi-Yau threefolds has curvature singularities called conifold

singularities. The space associated to the conifold singularity is known as the singular

conifold (SC) [145], which is a cone over the coset space T 1,1. On the plus side, it’s

Ricci flat and Kähler, and we know the explicit metric on it. However, it’s noncompact

and has a conical singularity at the tip, r = 0. There are two topologically distinct

ways of removing the conical singularity of the SC, while preserving the Ricci flat

and Kähler conditions, arriving at the deformed conifold (DC) [149] and the resolved

conifold (RC) [150], [155]. For each of these, the metric is explicitly known. These are

all noncompact, and must be truncated and glued to a bulk compact Calabi-Yau, as

discussed in Section 4.2.

We often speak of a warped throat spacetime, which is a 10D warped spacetime

(3.27) involving a noncompact throat as the unwarped 6D space, Ỹ6, which can be

approximated by a cone over some X5 base in the large r limit. These throats are a

general family which include the SC, the DC and the RC.

We will take the internal unwarped 6D manifold to be the RC, using the coordinates

ym = (r, ψ, θ1, φ1, θ2, φ2) in which the metric takes the form [150]

ds2
RC = g̃mndy

mdyn =κ−1(r)dr2 +
1

9
κ(r)r2(dψ + cos θ1dφ1 + cos θ2dφ2)2

+
1

6
r2(dθ2

1 + sin2 θ1dφ
2
1) +

1

6
(r2 + 6u2)(dθ2

2 + sin2 θ2dφ
2
2),

(4.1)

with

κ(r) =
r2 + 9u2

r2 + 6u2
. (4.2)

Here u is called the resolution parameter, which has dimensions of length. This naturally

defines a dimensionless radial coordinate ρ ≡ r/(3u). As r → 0 the second and third

parts of (4.1) vanish, corresponding to a shrinking S3 with coordinates (ψ, θ1, φ1),
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leaving an S2 with coordinates (θ2, φ2) of radius u.

One can consider the 10D geometry sourced by placing a stack of N D3-branes

extended along the noncompact 4 spacetime dimensions, appearing pointlike localized

at the north pole, θ2 = 0, of the S2 at the tip of the RC [155]. The resulting geometry

is a warped spacetime called the warped resolved conifold (WRC), with 10D metric

[150], [155]

ds2 = H−1/2(ρ, θ2)ds2
FRW +H1/2(ρ, θ2)ds2

RC (4.3)

where we have taken the 4D spacetime to be FRW, for our cosmological application,

and the 6D unwarped space is the RC.

The warp factor, H(ρ, θ2), is the solution to the Green’s function equation for the

Laplace operator on the RC. An exact expression for the WRC warp factor is [155]

H(ρ, θ2) = (LT 1,1/3u)4
∞∑
l=0

(2l + 1)HA
l (ρ)Pl[cos(θ2)], (4.4)

with the T 1,1 lengthscale set by L4
T 1,1 = (27/4)πNgsl

4
s . The Pl are the Legendre

polynomials, and the radial functions HA
l (ρ) are given in terms of the 2F1(a, b, c; z)

hypergeoemetric functions as

HA
l (ρ) =

2C̃β
ρ2+2β 2F1(β, 1 + β, 1 + 2β;−1/ρ2) (4.5)

where C̃β =
Γ(1 + β)2

Γ(1 + 2β)
, β =

√
1 + (3/2)l(l + 1). (4.6)

Since localizing the stack at the north pole specifies an angle, the warp factor must

now have both angular and radial dependence - whereas the warp factors only depend

on the radial coordinate in the case where the internal geometry is the SC or the DC,

and is an assumption usually made for generic warped throats. This motivates us to

explore branes moving in the angular directions within the WRC, where the warping

also acts in the angular direction.

The gauge gravity correspondence for a stack of D-branes near a conical singularity

of a cone over an X5 base was investigated in generality in [167] where strings on

AdS5×X5 correspond to a certain dual N = 1 gauge theory. Theories where the stack

of D-branes are localized at a point on the resolution of an orbifold have also been

considered, for example in [168] for C3/Z3.

The WRC has been investigated from the point of view of the gauge gravity corre-

spondence in [155], which found the dual gauge theory living on the stack to be a 4D

N = 1, SU(N)× SU(N) gauge theory coupled to two chiral superfields Ai, i = 1, 2 in

the (N,N) representation of SU(N) × SU(N); and two chiral superfields Bj , j = 1, 2
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in the (N,N) representation of SU(N) × SU(N). The fields Ai, Bj are given VEVs

such that the operator

U ≡ 1

N
Tr(|B1|2 + |B2|2 − |A1|2 − |A2|2) (4.7)

has VEV 〈U〉 = u2. The moduli space of these vacua has exactly the geometry of the

RC, with resolution parameter u.

Gluing a Warped Throat to a Bulk Calabi-Yau

For model building purposes we first take the noncompact limit, with an infinitely long

warped throat. This gives an imaginary self-dual (ISD) flux solution, defined by G− = 0

and Φ− = 0. However, note that a 10D geometry with an infinitely long warped throat

does not lead to 4D dynamical gravity, as Mp is infinite.

To remedy this, we cut off the warped throat at some large radial distance rUV ,

and glue it to a compact bulk Calabi-Yau. The metric on the bulk is not known, but

the metric on the warped throat is explicitly known for certain warped throats, such

as the SC, the DC and the RC. For this reason we try to get inflation to occur within

the warped throat. Although this may not be generic, it allows us to do calculations.

Perturbations of Φ− arise as a result of this gluing procedure and are solutions to the

Poisson equation (3.33), written in terms of the warp factor as

∇̃2Φ− = R4 +
H−2

6Imτ
|G−|2 +H|∂Φ−|2 + 2κ2

10H−1/2(J loc − T3ρ
loc
3 ). (4.8)

We will assume that the gluing will induce corrections of O(δ) to Φ−, for some small δ,

and we assume corrections to G− are of the same order. We will assume also that the

local terms don’t contribute at this order. The G− and Φ− terms appear on the RHS

of (4.8) at second order in δ, so that the leading order perturbation of Φ− in the large

throat limit is a solution to the homogeneous Laplace equation, so we denote it with

subscript h,

∇̃2Φh = 0. (4.9)

This distinguishes it from Φ− which is the full solution to the Poisson equation

arising when we consider the effect of a non-negligible R4, where the leading order

correction to Φ− = 0 from the gluing is given by

∇̃2Φ− = R4 (4.10)

so that Φ− includes Φh, but also the particular solutions to the Poisson equation.

The solutions of (4.9) and (4.10) will depend on the unwarped internal 6D geometry.
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In this part of the thesis we consider solutions to the Laplace equation (4.9) for the

DC and the RC geometry respectively. In Appendix A.2 we consider solutions to the

Poisson equation (4.10) for the RC.

Gluing the Deformed Conifold

Unfortunately, the exact solutions to the Laplace equation (4.9) are not known for

the deformed conifold. Progress has only been made in the mid-throat region [164] ,

rIR � r � rUV , where the geometry approximates that of the singular conifold, with

the 10D metric approaching AdS5 × T 1,1.

We can expand the solution in terms of the eigenfunctions YL(Zi) of the 5D Lapla-

cian on T 1,1 as

Φh(y) =
∑
L

ΦL(r)YL(Zi) (4.11)

where Zi are the angular coordinates on T 1,1. Here, the multi-index L ≡ (l1,m1, l2,m2, R),

labels the SU(2)1×SU(2)2×U(1)R quantum numbers under the corresponding isome-

tries of T 1,1.

But the equation for the radial part, ΦL(r), has no known analytic solution for the

DC, and can only be solved numerically [169]. Limited to the mid-throat region, Φh

can be expanded in powers of r/rUV as [165]

Φh(r, Zi) ≈
∑
L

cL

(
r

rUV

)∆(L)

YL(Zi) (4.12)

where ∆(L) ≡ −2 +
√

6[l1(l1 + 1) + l2(l2 + 1)−R2/8] + 4 (4.13)

where cL are constant coefficients.

The lowest value of ∆(L) will give the leading contributions for r < rUV. The lowest

value is ∆(L) = 3/2, for L = (1/2, 1/2, 1/2, 1/2, 1) [164]. But the U(1)R symmetry of

T 1,1 is broken in the DC to a discrete Z2, so only modes with R = 0 are allowed,

forbidding the ∆(L) = 3/2 mode. The next smallest mode, ∆(L) = 2, for L =

(1, 0, 0, 0, 0) or L = (0, 0, 1, 0, 0) is allowed, and comes with an angular term YL ∼ cos θi.

This mode was analyzed in [170] in the DBI limit.

The coefficients cL appearing in (4.12) are undetermined, apart from their small size.

The authors of [171], [172] have taken a statistical approach to investigating warped

D3-brane inflation in this approximation. For example, [172] explores the parameter

space spanned by the first 12 cL coefficients and determining the success/failure of the

model in each case. However, a flat field space metric was used instead of a curved

conifold metric which was corrected for in [173] and appeared in a corrected version

of [172]. This statistical approach has been restricted to the mid-throat region of the
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singular conifold, but could also be applied to the RC geometry we consider in this

work, with the benefit of not being restricted to lie in the mid-throat region.

Gluing the Resolved Conifold

For the RC we can again expand Φh in the YL(Zi), but in this case the radial part

of the Laplace equation can be solved exactly on the resolved conifold in terms of

hypergeometric functions [155], which was not the case for the DC.

In this work, we are interested in probing the tip of the WRC, so we focus on

solutions of the Laplace equation which are invariant under the SU(2)1×U(1)ψ which

rotates the (θ1, φ1) and ψ coordinates of the shrinking S3 which has zero radius at the

tip7. This leaves us (ρ, θ2, φ2), from which we now drop the subscripts.

There are two particular independent solutions to the radial part of the Laplace

equation on the RC, invariant under the SU(2)1 × U(1)ψ. They are HA
l (ρ), given in

(4.5), and HB
l (ρ), given by

HB
l (ρ) = 2F1(1− β, 1 + β, 2;−ρ2). (4.14)

The most general solution to the Laplace equation with the given isometries is

Φh(ρ, θ, φ) =

∞∑
l=0

m=l∑
m=−l

[alH
A
l (ρ) + blH

B
l (ρ)]Ylm(θ, φ). (4.15)

This solution is valid anywhere within the WRC throat, in particular near the tip.

This is a much better situation compared to the WDC, where the solution is only valid

in the mid-throat region. The coefficients are undetermined, yet small, al, bl = O(δ).

For completeness, we give the asymptotics of the two radial functions HA
l (ρ) and

HB
l (ρ) [155]

2

ρ2
+ 4β2 log ρ+O(1)

0←ρ←− HA
l (ρ)

ρ→∞−→
2C̃β
ρ2+2β

(4.16)

O(1)
0←ρ←− HB

l (ρ)
ρ→∞−→ O(ρ−2+2β).

In Appendix A.2 we will consider solutions to the Poisson equation (4.10) on the

RC, which gives corrections to Φ− in the limit of a finite but large throat.

7It should be emphasised there is no particular reason other than simplicity in focussing on solutions
with the given isometries. We focus on dynamics at the tip, as this is new analytic territory compared
to that available for the WDC. Note that studying dynamics along the whole throat is calculable in
the WRC but we leave this interesting problem to a future investigation.
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Moduli Stabilization

Previous studies [109], [143], [142] have stabilized the complex-structure moduli and

axiodilaton using the DC as the internal 6D unwarped metric. The DC has Hodge

numbers h2,1 = 1, h1,1 = 0 [174] so there is only one complex-structure modulus to

stabilize – the deformation parameter of the deformed conifold, z. Since h2,1 = 1, one

can turn on primitive (2, 1)-form fluxes which preserve N = 1 SUSY. The third betti

number is b3 = 2+2h2,1 = 4, so there are 4 non-trivial 3-cycles in the DC. One of these,

the A-cycle, is associated to the finite size S3 at the DC tip. There is an associated

3-cycle, B, which intersects this A-cycle exactly once.

One can then choose to turn on the following quantized (2, 1)-form fluxes through

the A,B cycles

1

2πα′

∫
A
F3 = 2πM and

1

2πα′

∫
B
H3 = −2πK. (4.17)

These fluxes allow for the superpotential to be written in terms of z. Since SUSY is

preserved, one can minimize the scalar potential by imposing DzW = 0 which stabilizes

z, by solving DzW = 0 for z. In the noncompact DC, the axiodilaton is not fixed by

the superpotential - instead it is frozen in the Klebanov-Strassler solution.

In the noncompact DC limit, with an infinitely long throat, the DC B-cycle degen-

erates to infinite size. When the DC is cut off and glued to a compact bulk Calabi-Yau,

the B-cycle becomes finite. The gluing will generically increase h2,1 for the entire man-

ifold, meaning there are more complex-structure moduli to stabilize. Assuming one can

first stabilize z near the conifold point z = 0, the additional complex-structure mod-

uli can be stabilized while preserving N = 1 supersymmetry using the superpotential

generated by the fluxes. In this compact case, the axiodilaton is no longer frozen, as

in the KS solution. It is now fixed by including (2, 1)-form fluxes over the remaining

two 3-cycles distinct from A and B. This contributes to W , and one can then impose

DτW = 0, near z = 0 and solve for τ , which preserves N = 1 SUSY [109].

The RC on the other hand has Hodge numbers h2,1 = 0, h1,1 = 1 [174] so there are

no complex-structure moduli to stabilize, instead there is a single Kähler modulus, the

resolution parameter u. Since h2,1 = 0, there are no cohomologically nontrivial closed

(2, 1)-forms, so one can’t turn on fluxes which preserve N = 1 SUSY. The third betti

number is b3 = 2 + 2h2,1 = 2, so there are 2 non-trivial 3-cycles in the RC, on which

(3, 0)-form fluxes could be turned on, and these would classically fix the axiodilaton.

However, these fluxes will break N = 1 SUSY, and so the equation determining the

vev of the axiodilaton would be obtained by minimizing the full scalar potential, rather

than just solving DτW = 0. It would be interesting to compare the energy scale at

which SUSY would need to be broken to fix the axiodilaton in this way, compared to

the energy scale at which SUSY is broken when uplifting to a dS mimimum, as in [143].
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The Kähler modulus u would need to be stabilized by non-perturbative effects, [142].

This may also fix the axiodilaton, without the need for breaking SUSY. It is outside

the scope of this thesis, but it would be interesting to investigate in future work at

what value u is fixed at, and its possible mixing with the open string brane moduli.

When the compact case is considered, the bulk Calabi-Yau may have a different

topology, allowing for h2,1 > 0, and so SUSY preserving primitive (2, 1)-form fluxes may

be turned on, stabilizing the additional complex-structure moduli and the axiodilaton.

Indeed, there have been multi-throat scenarios proposed, [156], in which the stan-

dard model is required to be situated in a seperate throat to that where inflation occurs,

and to where the anti-branes, which end inflation, are located. Since this scenario al-

lows for these extra throats, it doesn’t seem too much to ask that there is another

warped throat in the compactification, perhaps a WDC throat, which allows stabiliza-

tion of the complex-structure moduli. Perhaps it’s too much to hope that one throat

will be able to do everything: stabilize, inflate, produce the standard model and give a

dS vacuum.

In addition, it has been suggested that there might be a mild hierarchy between the

scales at which the closed string moduli and open string moduli are stabilized, so that

the two problems are approximately decoupled [175]. This serves as motivation for us

to investigate brane inflation in the WRC.

4.3 Natural Inflation Model

4.3.1 Preview

In this section we produce a model of natural inflation using a D-brane in the WRC

geometry, which has a Planckian decay constant, meaning it can give a value for the

tensor-to-scalar ratio which is possibly large enough for future surveys to find, which

for the purpose of this chapter we take to be 0.1. Although the model may appear

contrived, the point is that it is a proof-of-concept model, which provides a counterex-

ample to the claim that all string theory models predict an unobservably small value

of the tensor-to-scalar ratio.

In more detail, we are interested in modelling inflation using the open string moduli

arising as the coordinates of a probe D-brane within the WRC geometry, which are

scalar fields of the 4D effective theory. The probe approximation means ignoring any

backreaction coming from the mobile brane, onto the WRC supergravity background,

which is itself sourced by the stack of N D3-branes at the north pole of the S2 at the

tip of the RC. Note that N must be large for the SUGRA solution to be valid, so that

for a single probe D3-brane, the backreaction should be negligable. The backreaction

for a probe D5-brane is discussed in Appendix A.1.
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In the original warped throat models of inflation, motion in the angular directions

is assumed stabilized before inflation begins, with inflation occurring along a radial

path. But the Baumann-McAllister (BM) bound implies a stringent upper bound on

the scalar-to-tensor ratio r for motion along the radial path [161]. In this work we

instead look to inflate along the angular direction θ2, where the BM bound no longer

restricts r, as pointed out in [176].

Indeed, contrary to the WSC and WDC, the simplest form of the warp factor for the

WRC has dependence on both ρ and θ2, so for the WRC one might expect interesting

motion in the ρ and θ2 directions. More general models can be considered where the

brane also moves in the other directions - we defer this more complicated study to

future investigation.

Brane motion in both the radial and one angular direction of the WDC was consid-

ered in [170,177–180], however, the majority of the trajectory was in the radial direction.

This was done in the DBI limit, where the brane motion is ultrarelativstic. Studies of

brane inflation with multiple fields were considered more generally in [176,181,182].

In this work, we will instead show that for a suitable choice of coefficients in the

homogeneous solution Φh in (4.15), ρ rapidly approaches a minimum value near the tip

of the WRC. The brane then follows a path in the angular direction θ2 down to the

minimum of the potential8. It is the latter motion which will generate the 50-60 e-folds

of inflation. We can set the initial conditions to be such that we begin at the minimum

in the radial direction and just off to the side of the maximum of the potential in the

θ2 direction, which we now relabel as θ2 ≡ θ, without ambiguity.

Using this setup we will construct an explicit original model of natural inflation

[8, 139–141] i.e. an inflationary model for the inflaton σ, with the potential

V (σ) = Λ4

[
1 + cos

(
σ

f

)]
. (4.18)

The observationally favoured values for the number of e-foldings N , the scalar spectral

tilt ns, together with a value for the tensor-to-scalar ratio r which may be large enough

to be observed in the near future are given by the parameter choice of energy scale

Λ = MGUT ≈ 1016GeV and decay constant f ∼ mp ∼ 5Mp ≈ 1.2 × 1019GeV, for mp

the Planck mass, and Mp the reduced Planck Mass [141] .

We will derive a potential of the form (4.18) by considering brane potentials of the

general form

V =
M2
p

4

{
ϕ(y) + λ

[
Φ−(y) + Φh(y)

] }
(4.19)

8We shall see that with this choice of coefficients, the potential is flat along the other 4 angular
directions and so we can choose to set these anglular fields to zero.
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where ϕ(y), λ, Φ−(y) and Φh(y) depend on the choice of probe D-brane. The term

ϕ(y) arises from the noncancellation of DBI and Chern-Simons (CS) terms in the slow

roll limit, and also includes any constants independent of the brane position which

contribute to the 4D energy density. The Φh(y) term is the nonconstant solution to

the homogeneous Laplace equation on the RC. The Φ−(y) term is the inhomogeneous

part of the solution to the Poisson equation, present only when considering corrections

from the Ricci scalar. This is explained in more detail in Appendix A.2. The factor of

λ is a constant which depends on the choice of probe D-brane.

The Φh(y) term is independent of the choice of probe brane, and one can freely

choose the coefficients of independent solutions of the Laplace equation. We choose

to keep two independent solutions to the Laplace equation, but this is by no means a

unique choice. It is motivated only by our aim of reaching a potential related to the

natural inflation potential.

One solution we keep is non-normalizable for large ρ, with charges

L = (l1,m1, l2,m2, R) = (0, 0, 1, 0, 0) (4.20)

which is present for the choice of non-zero b1, and takes the form

HB
1 =

3

2
(3ρ2 + 2) cos θ. (4.21)

This term is desirable because of its cosine term. Our model will take the inflaton field

σ to be the canonical scalar field Θ, proportional to the angular coordinate θ. The

normalisation of Θ in terms of θ will determine f in (4.18), and depends on the choice

of probe D-brane.

We will also keep one mode which is normalizable for large ρ, with charges

L = (l1,m1, l2,m2, R) = (0, 0, 0, 0, 0) (4.22)

which is present for nonzero a0, and takes the form

HA
0 =

1

ρ2
− log

(
1

ρ2
+ 1

)
. (4.23)

Taking a0 > 0 gives a large positive contribution near ρ = 0. Thus, our choice of

coefficients leads to the homogeneous solution to the Laplace equation on the RC, Φh,

given by

Φh =
a0

ρ2
− a0 log

(
1

ρ2
+ 1

)
+

3

2
b1
(
3ρ2 + 2

)
cos

(
Θ

5Mp

)
. (4.24)

In Subsection 4.3.2, we consider a probe D3-brane. This has λ = 4T3/M
2
p , and a
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constant ϕ(ρ) = V0. This is because the DBI and CS terms exactly cancel in the slow

roll limit for a D3, but other sources contribute to the 4D energy density to give the

constant V0. This constant sources a mass term, Φ− ∼ m2ρ2 at leading order in small

ρ, when one includes the R4 contribution [110]. This mass term, when combined with

the large positive wall from the HA
0 term will give a radial minimum at small ρ.

In Subsection 4.3.3, we consider a probe wrapped D5-brane with electric flux turned

on in the wrapped directions. In this case, ϕ(ρ) is not constant, and depends on ρ

quadratically, ϕ(ρ) ∼ ρ2. This arises from the non-cancellation of the DBI and CS

terms in the slow roll expansion of the action. This ρ2 term will again give a radial

minimum at small ρ when combined with the large positive contribution for small ρ

from the HA
0 term. In Appendix A.2 we show that ϕ(ρ) ∼ ρ2 sources a quartic term

in Φ−, with a large positive coefficient. However, this quartic term is subleading in the

small ρ limit.

Our work differs from previous works deriving natural inflation from closed string

axions in string theory, which arise from integration of a p-form over a p-cycle in the

compact space, see Section 3.6. For these closed string axions, a periodic potential can

arise in the 4D effective theory when the continuous axion shift symmetry is sponta-

neously broken to a discrete shift symmetry, due to nonperturbative effects arising from

worldsheet instantons or Euclidean D-brane instantons. The decay constant for each

closed string axion is set by the kinetic terms, which depend on the type of axion used.

However, these decay constants turn out to be generically sub-Planckian, by looking at

the kinetic terms for these axions and relating them to the compactification volume,

and hence the Planck mass, together with the validity of the α′ expansion [136,137,183].

It should be noted that although one can’t generically obtain a Planckian decay

constant for a single closed string axion from a controlled string theory, there may be

additional structure which allows one to obtain a Planckian effective decay constant.

For example, in Aligned Natural Inflation [184, 185], the extra structure involves two

interacting closed string axions with sub-Planckian decay constants, which after a suit-

able amount of fine tuning aligns to produce a direction in axion field space which

has a Planckian effective decay constant. Further extensions to more than two axions

were investigated in [186]. Embedding axion alignment in string theory was recently

explored in [187], using gaugino condensation on magnetized or multiply-wound D7-

branes, however closed string moduli stabilization was not addressed in this model.

In [188], moduli stabilization was included in both KKLT and LVS regimes, with non

perturbative effects in the superpotential used to produce the alignment, or the al-

ternative Hierarchical Axion Inflation [189]. Another embedding of Aligned Natural

Inflation in IIB orientifolds was discussed in [190], using C0 and C2 R-R axions in the

LVS regime.

A separate model, N-flation [191], motivated by Assisted Inflation [12], and similar
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proposals [192–194], use many light non-interacting closed string axions which con-

tribute to one effective axion direction with a Planckian effective decay constant. The

masses of the axions can be made hierarchically lighter than the Kähler moduli [195].

However, the large number of axions requried [196] can renormalize the Planck mass,

spoiling the achievement of a Planckian decay constant. N-flation and Aligned Natural

Inflation can be combined as in [197–199].

Axion Monodromy Inflation encompasses a related class of models which achieve

large field inflation from closed string axions in specific brane backgrounds from string

theory and F-theory. The brane backgrounds explicitly break the axionic shift symme-

try of the potential, giving rise to monodromy [183, 200–205]. Inflation can continue

through many cycles of the axion field space, with an effective field range which is much

larger than the original period of the axion, giving large field inflation. However, the

axion monodromy models generically suffer from a large backreaction problem, coming

from a large D3-brane charge and/or backreaction from the branes themselves [206].

These backreaction difficulties are alleviated when the monodromy mechanism is com-

bined with the idea of alignment, in a model known as Dante’s Inferno, where the

inflaton takes a gradual spiral path in 2D axion field space [207]. Alternative mon-

odromy models use D7-brane position moduli with a shift symmetry broken by a flux

superpotential [208], or the Ignoble Approach of [209] where the axion mixes with a

topological 4-form field strength to produce the monodromy. Possible embeddings of

natural inflation in supergravity were investigated recently in [210]. A review of axion

inflation in the Planck era is given in [211].

Our natural inflation model doesn’t use any of the above closed string axions as the

inflaton, and so a Planckian decay constant is not ruled out a priori. Our inflaton is

instead an open string modulus, identified with the position of the brane in an angular

direction on the RC. It has a discrete shift symmetry, which is set by the internal

geometry, with the decay constant set by the normalization of the kinetic term. Thus,

our model shares more similarity to models of spinflation [170]. However, we also differ

from the setup of [170], because we explore the use of the RC rather than the DC

geometry. Also, we use a probe wrapped D5-brane with flux, rather than a probe

D3-brane without flux, and we probe the tip rather than the mid-throat region. The

combination of these choices allows us to select a Planckian decay constant, which we

then check is suitable for a controlled supergravity approximation, and doesn’t produce

a large backreaction.

In previous work, inflation from a brane moving in an angular direction was found

to be rather ineffective [170,171,178]. In these models the initial conditions were such

that the brane starts far from the tip and where the major contribution to the number

of e-folds was from the radial motion towards the tip. However, in our model we make

a different choice of initial conditions, such that the brane begins at the tip and due to

88



CHAPTER 4. D-BRANES IN THE WARPED RESOLVED CONIFOLD

the steep potential in the radial direction, experiences no motion in the radial direction.

All of the inflationary e-folds occur along the angular direction. The flatness in the

angular direction is a result of the choices of initial radial position (bringing a large

warp factor), the use of a wrapped D5-brane (rather than a D3-brane) and turning on

2-form flux through the wrapped dimensions of the brane (allowing for a nonzero CS

potential from the gluing to a bulk Calabi-Yau).

4.3.2 D3-brane in the WRC

To begin, we review how the potential, V , felt by a single slowly moving probe D3-brane

in a warped throat geometry is related to Φ− via V = V0 + T3Φ− [162].

Consider a probe D3-brane, with worldvolume coordinates χa extended along the

four noncompact directions, M4. The action has contributions from the DBI term and

the Chern-Simons term

SD3 = −T3

∫
M4

d4χ
√
−det(P4[gMN +BMN + 2πα′FMN ]) + T3

∫
M4

P4[C4] (4.25)

where P4 is the pullback of the brane worldvolume to M4. We assume 4D isotropy

and homogeneity, relevant for cosmological spacetimes, meaning we should consider

time-dependent internal coordinates ym(t). Substituting a general warped 10D metric

gMN of the form (3.27)

ds2 = H−1/2(y)gFRW
µν dxµdxν +H1/2(y)g̃mndy

mdyn (4.26)

together with the ansatz (3.28) for C4 and taking B2 = 0 = F2 gives the effective 4D

Lagrangian density

L = −T3H−1(y)
√

1−H(y)g̃mnẏmẏn + T3α(y). (4.27)

For slowly rolling fields, we can expand the square root in (4.27), to give

L ≈ 1

2
T3 g̃mnẏ

mẏn − V (y) (4.28)

where the D3-brane potential V (y) will be

V (y) = V0 + T3(H−1(y)− α(y)) = V0 + T3Φ−. (4.29)

Here V0 is a constant extracted from Φ−, since Φ− as defined in (3.33) is invariant

under constant shifts, so that now Φ− doesn’t include a constant term. For an exact

ISD solution, Φ− = 0, and so the D3-brane feels no potential in this slow roll limit.

The leading order potential then comes from the O(δ) corrections to Φ− coming from
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the gluing of the warped throat to the bulk Calabi-Yau.

The other regime, in which the brane is moving relativistically, is called DBI in-

flation. In this case, the motion is constrained by the causal speed limit, set by the

positivity inside the square root in (4.27). This can lead to inflation, even if the poten-

tial is steep, because of the noncanonical kinetic terms. In this work we only consider

the slowly rolling regime, and defer investigation of the DBI limit to a future investi-

gation.

Natural Inflation from a D3-brane?

In this section we show our first attempt at realising natural inflation using a slow

rolling D3-brane probe. We will find that we can’t have a Planckian decay constant in

a consistent manner. In Subsection 4.3.3 where we consider a probe wrapped D5-brane

with flux, we’ll find instead that we can consistently choose a Planckian decay constant.

Consider the WRC metric restricted to the (ρ, θ) subspace

ds2 = u2

[
9

(
ρ2 + 2/3

ρ2 + 1

)
dρ2 +

(
3

2
ρ2 + 1

)
dθ2

]
. (4.30)

Now we make a coordinate transformation to canonical coordinates (Z,Θ), so that the

kinetic terms appearing in the D3-brane slow roll Lagrangian (4.27) will be canonical

1

2
T3 g̃mnẏ

mẏn ≈ 1

2
T3u

2

[
9

(
ρ2 + 2/3

ρ2 + 1

)
ρ̇2 +

(
3

2
ρ2 + 1

)
θ̇2

]
(4.31)

=
1

2
Ż2 +

1

2
Θ̇2. (4.32)

In the small ρ limit, near the tip, the desired coordinates are given by

ρ =
1

u
√

6T3
Z (4.33)

θ =
1

u
√
T3

Θ. (4.34)

We now examine the potential (4.19) for the D3-brane, with our choice of homoegenous

solutions to the Laplace equation, in terms of these canonical coordinates. It is

V (Z,Θ) = V0 + T3

[
m2Z2

6u2T3
+

2a0u
2T3

3Z2
− a0 log

(
1 +

2u2T3

3Z2

)
+

3b1
4

(
4 +

9Z2

u2T3

)
cos

(
Θ

u
√
T3

)]
.

(4.35)

This will have a stable minimum in Z at Zmin. If inflation begins at Z close to Zmin

and sufficiently off to the side of the ridge along the Θ direction, the motion will be
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mostly in the Θ direction. We then identify f = u
√
T3 for a D3-brane.

We now investigate whether one can arrange for the decay constant f = u
√
T3 to be

of order 5Mp. Note that in our conventions, T3 = [(2π)3gsl
4
s ]
−1, and κ10 = 1

2(2π)4gsl
4
s .

We require

25M2
p = u2T3 =

u2

(2π)3gsl4s
, (4.36)

but we also have that the reduced Planck mass is related to the warped volume of the

Calabi-Yau by M2
p = V w

6 κ
−2
10 . We take the throat length to be rUV � rmin. Throughout

the region rmin � r < rUV, the space is approximately AdS5×T 1,1 and the warp factor

goes like H ∼ L4
T 1,1/ρ

4, where L4
T 1,1 = (27/4)πgsNl

4
s . Under the assumption that

V w
throat

>∼V
w
bulk, we get

M2
p
>∼ κ−2

10 vol(T 1,1)

∫ rUV

rmin

y5H(y)dy ≈
Nr2

UV

2(2π)4gsl4s
. (4.37)

Near the tip of the WRC the Planck mass receives a contribution

Nr2
min

gsl4s
, (4.38)

which will only contribute to (4.37) by multiplication of an order one factor for rmin
<∼ rUV/50.

This is because in the small ρ part of the WRC throat, where we are near to the N

D3-branes, the space is locally AdS5×S5 and the warp factor is H ∼ L4
S5/y

4, now with

y the distance to the North Pole, where the N D3’s are located.

In order to match (4.36) to (4.37) we must take the throat length rUV to be

r2
UV ≈

4πu2

25N
� u2, for large N � 1. (4.39)

But u is the natural length scale of the RC. To have the length of the throat rUV

hierarchically smaller than u seems unnatural, since we assumed a very long throat

for the noncompact limit, and also for the Mp approximation coming mainly from the

throat. It seems we can’t consistently choose f = 5Mp for a D3-brane.

Finally, for a later comparison with the D5-brane case, we note that turning on a

constant electric flux of ε < 1 on the D3-brane gives a factor (1− ε2)1/2 in front of the

DBI part of the action, with the CS part of the D3 action left unchanged. This leads

to a non-cancellation of the inverse warp factor, and so the following potential term

appears

V = T3

[
(1− ε2)1/2 − 1

]
H−1. (4.40)
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But we note that this comes with a negative sign, and so acts to destabilize the overall

potential, making it unsuitable for achieving a stable minimum in Z. In the D5-brane

case, this non-cancellation will come with the opposite sign, as then the flux appears

in the CS action.

4.3.3 Wrapped D5-brane in the WRC

In this section we’ll find that for the probe wrapped D5-brane with flux, we can obtain

f ≈ 5Mp, corresponding to r = 0.1, within the long throat approximation. In this

case the non-cancellation of the DBI and CS terms works to our advantage, giving a

quadratic term in the potential with a positive coefficient.

We consider the same WRC background but this time we place a probe D5-brane

in it, with 4 of it’s dimensions extended along the 4 noncompact spacetime directions

and wrap the remaining two spatial dimensions around a 2-cycle Σ2 inside the compact

space p times. We also turn on an F2 flux on the D5-brane through Σ2.

The action for the p-wrapped D5-brane with worldvolume coordinates ξα and world-

volume W5 is

SD5 = SDBI−D5 + SCS−D5 (4.41)

=− T5

∫
W5

d6ξ
√
−det(P6[gMN +BMN + 2πα′FMN ])

+ T5

∫
W5

P6

[
C6 + C4 ∧ (B2 + 2πα′F2)

] (4.42)

where P6 is the pullback of a 10D tensor to the 6D brane worldvolume, and T5 =

[(2π)5gsl
6
s ]
−1.

It’s important to distinguish between the embedding of the D5-brane in the 10D

spacetime, and the wrapping of the D5 on a 2-cycle Σ2 in the 6D internal space.

The embedding is a relation between the brane worldvolume coordinates ξα and the

10D spacetime coordinates xM , given as ξα = kα(xM ), α = 0, ..., 5 for some function

kα. Similarly to [212], we choose the simple embedding

ξα = (x0, x1, x2, x3, θ1, φ1). (4.43)

We specify the wrapping on the 2-cycle Σ2 in the 6D internal space by taking

6− 2 = 4 relations on the internal ym coordinates

r = constant θ2 = f(θ1) = −θ1 (4.44)

ψ = constant φ2 = g(φ1) = −φ1. (4.45)

With this choice of embedding and wrapping, the pullback of the 10D metric gMN to
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the 6D D5-brane worldvolume is

P6[g]αβ =
∂XM

∂ξα
∂XN

∂ξβ
gMN , (4.46)

which takes the following diagonal form

P6[g]00 = −H−1/2(1−Hv2) (4.47)

P6[g]ii = a2H−1/2 (4.48)

P6[g]θ1θ1 =
1

3
H1/2(r2 + 3u2) (4.49)

P6[g]φ1φ1 =
1

3
sin2 θ1H1/2(r2 + 3u2), (4.50)

where there’s no summation implied on the ii component, and we restrict to only have

motion in the r, θ2 directions, so that the speed squared of the brane is

v2 =

(
r2 + 6u2

r2 + 9u2

)
ṙ2 +

1

6

(
r2 + 6u2

)
θ̇2

2. (4.51)

We choose to turn on a worldvolume flux F2, of strength q along the wrapped 2-cycle,

so that its pullback has the following non-zero components

P6[2πα′F2]θ1φ1 = 2πα′
q

2
sin θ1 = −P6[2πα′F2]φ1θ1 . (4.52)

As an aside, we note that we have chosen to turn on an F2 worldvolume flux, but we

could also have turned on a B2 worldvolume flux, as discussed in Appendix A.3. The

wrapped D5-brane would lead to a potential for the b-axion associated with integrating

this B2 over the wrapped 2-cycle. This b-axion was used to as the inflaton in models

of axion monodromy inflation [200]. However, for suitable initial conditions on the size

of b, this term will not affect our inflationary dynamics from the position modulus of

the wrapped D5-brane.

Now we have the following term in the DBI part of the action

SDBI−D5 = −pT5

∫
M4×Σ2

d4xdθ1dφ1

√
−det(P6[g + 2πα′F2]) (4.53)

= −pT5

∫
M4

d4xa34πH−1F(r, θ2)1/2
√

1−Hv2 (4.54)

where F(r, θ2) ≡ H
9

(r2 + 3u2)2 + (πα′q)2. (4.55)

Now we need to do a slow roll expansion, and check what terms multiply the kinetic

terms, and then define new coordinates which have canonical kinetic terms. In the 4D

Lagrangian density, (with a3 absorbed into the integration measure) the coefficient of
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1

2
v2 in the expansion of the square root is

4πpT5F(r, θ2)1/2. (4.56)

Since the open string modulus has mass dimensions, we expect this modulus to

be affected by the warping. In the case of the D3-brane, the warp factors exactly

cancelled in (4.27) to give (4.28) with 4D canonical fields with no powers of the warp

factor. However, in the case of a wrapped D5-brane, we see this cancellation no longer

occurs, with dependence on the warp factor to the power of 1/2 as set by F1/2 in (4.54).

If we neglect O(α′2q2) and take the AdS limit of the throat, we would get F ∼ R4/9

giving the same result as found in [212]. However, we are interested in the small r region

of the throat, near the stack, where we will fix r = rmin � rUV.

In contrast to the D3-brane case, we can now take rUV ∼ u, so that the length of

the throat is of order the resolution parameter, which is the natural lengthscale of the

WRC geometry. This is because we have more freedom in the model from the wrapping

number p.

For the moment let’s take the following assumption on the size of the flux q

q <∼
1

π

(
u

rmin

)2√
4πgsN, (4.57)

which means that to leading order in u/rmin, F has behaviour

F(r, θ2)1/2 ≈
u2L2

S5

r2
min

≈
(

u

rmin

)2

l2s
√

4πgsN (4.58)

with the q2 term possibly contributing only an O(1) numerical factor in front of this.

Here L4
S5 = 4πgsNl

4
s is the fourth power of the AdS5 × S5 radius, which is the near

stack geometry created by the N D3’s.

Decay Constant f

The canonical kinetic coordinate Θ is

Θ ≡ u2

rmin
(4πpT5L

2
S5)1/2θ2. (4.59)

The dominant contribution to the Planck mass from a long warped throat of length

rUV ∼ u is

M2
p
>∼ κ−2

10 vol(T 1,1)

∫ u

0
y5H(y) ≈ Nu2

2(2π)4gsl4s
. (4.60)

We want the decay constant f to be 5Mp for observable tensor modes, which occurs
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for the canonical field Θ in (4.59) when we set the coefficient of θ2
2 to be equal to 25M2

p .

Using the reduced Planck mass from the volume of the throat (4.60), we find that this

requires

p ∼ 25

4π

(rmin

u

)2

√
Nπ3

4π2gs
. (4.61)

Note that there is dependence on the ratio (rmin/u)2, which is small for rmin near the

tip. This will be helpful for keeping the backreaction under control, as we will show in

Appendix A.1.

Scale of Inflation

We now wish to set the scale of inflation to be MGUT. Writing the action for the

D5-brane minimally coupled to gravity in an FRW spacetime and expanding in slow

roll fields gives

SD5 =

∫
M4

d4x
√
gFRW

[
M2
p

2
R4 +

1

2
Ż2 +

1

2
Θ̇2 − V

]
(4.62)

where V =
M2
p

4
[ϕ(y) + λΦ−] (4.63)

and

Φ− = Φ− + Φh (4.64)

ϕ(y) =
4

M2
p

4πpT5H−1
(
F1/2 − l2sπq

)
(4.65)

λ =
4

M2
p

4π2l2sT5pq. (4.66)

We are aiming for a natural inflation type potential, which we derive from the

homogeneous solution (4.24). We want the cosine term to be

V = M4
GUT cos

(
Θ

5Mp

)
. (4.67)

We now ask what value of q is required to match the coefficient of cos(Θ/5Mp) in (4.63)

to be M4
GUT , in the small ρ limit. From (4.63), (4.66) and (4.24), this requires

4π2l2sT5pq3b1 = M4
GUT . (4.68)
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Taking b1 = δB, with B = O(1), the LHS becomes

4π2l2sT5pq3b1 ≈ 2.1× 10−2 N
1/2

g
3/2
s l4s

(rmin

u

)2
δBq. (4.69)

The GUT scale is MGUT = 1016GeV ≈ 4×10−3Mp and using the reduced Planck mass

from (4.60) gives

M4
GUT ≈ 2.6× 10−17N

2u4

g2
s l

8
s

, (4.70)

meaning we need to take q of order

q ≈ 1.2× 10−15 N3/2

g
1/2
s δB

(
u

ls

)4( u

rmin

)2

(4.71)

to get the desired GUT scale.

Backreaction of a Wrapped D5-brane

Unlike the D3-brane, the D5-brane can backreact on both the warp factor and the

internal geometry. The backreaction on the internal geometry is possibly lethal to the

assumption that the leading order terms in the potential are small, coming from the

gluing of the warped throat to the CY. We should check that our chosen values for p,

in (4.61), and q, in (4.71), are small enough so that backreaction effects are negligable.

Table 4 summarizes the data we take for various parameters. The model is fairly

robust to small changes in these values.

Parameter B gs N u δ rmin sin θ2

Data 1 10−1 104 50ls 10−2 ls 10−2

Table 4: Compactification data for our model

Before we check that the backreaction from the wrapped D5-brane is under control,

we can first check the value of q, given in (4.71) for the scale of inflation to be the GUT

scale, against the constraint we already imposed on it in (4.57) for the approximation

of F1/2 in (4.58). We require

1.2× 10−15 N3/2

g
1/2
s δB

(
u

ls

)4( u

rmin

)2
<∼

1

π

(
u

rmin

)2√
4πgsN (4.72)

⇔ N

Bgsδ

(
u

ls

)4
<∼ 9.4× 1014 (4.73)
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independent of the value of rmin. For the data in Table 4, we have

N

Bgsδ

(
u

ls

)4

∼ 6.25× 1013 <∼ 9.4× 1014 (4.74)

as required.

In Appendix A.1 we show further that for this choice of data, the backreaction is

under control. We calculate the size of the backreaction on the warp factor and on the

internal geometry, and find that they are small compared to what is produced by the

stack.

The Stable Radial Minimum

We now confirm that we can find a stable radial minimum in ρ for our potential. Using

our chosen p in (4.61) and q in (4.71), and the data in Table 4 we get

ϕ(y) =
4

M2
p

4πu2pT5H−1/2 ≈ 180

u2
ρ2 (4.75)

λ =
4

M2
p

4π2l2sT5pq ≈ 4
M4

GUT

δM2
p

≈ 0.2

δu2
≈ 20

u2
(4.76)

where we’ve used that MGUT = 4× 10−3Mp, and

M2
p =

Nu2

2(2π)4gsl4s
≈ 2× 108

u2
(4.77)

for our data. Then we have

λM2
p /4 ≈ 100M4

GUT. (4.78)

We note that in the potential there is the term

M2
p

4
ϕ(ρ) ≈M4

GUT880ρ2 (4.79)

coming from the non-cancellation of DBI and CS terms. The leading order behaviour

of the potential for small ρ is then

V ≈M4
GUT

[
880ρ2 +

A0

ρ2
+ 2A0 log ρ+ 3B1 cos

(
Θ

5Mp

)]
, (4.80)

where we have kept the ρ2 term from ϕ(y), since it comes with a large coefficient, but

neglected positive powers of ρ from Φh in the small ρ limit.

We now look for a minimum ρmin small enough that our selected data rmin ∼ u/50

is valid. This means that we require ρmin ∼ 1/150 ≈ 7× 10−3.
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Figure 6: Natural inflation potential for the D5-brane

This requires us taking A0 ≈ 10−5, which gives us ρmin ≈ 10−2. This is a bit

of fine-tuning, but the only restriction we have on the ai is that they are less than

O(δ) = 10−2. The fact that we’ve taken all the other ai as zero is at least consistent

with having a very small a0.

Once we have stabilized in the ρ direction at ρmin, the effective potential is only

in the Θ direction, and has the form of the natural inflation potential. A plot of the

potential, with this value of A0 and B = 1 is shown in Figure 6.

We could include the correction from the Ricci scalar, calculated in Appendix A.2,

which contributes at leading order with a quartic term in ρ with a large coefficient.

This changes the potential to

V ≈M4
GUT

[
880ρ2 + 4500ρ4 +

A0

ρ2
+ 2A0 log ρ+ 3B1 cos

(
Θ

5Mp

)]
. (4.81)

However, the position of the minimum is highly insensitive to the addition of this term

in the small ρ limit. A priori, one might have expected corrections to contribute towards

the position of the minimum, but it seems the dominant feature is the small value of

A0.

4.4 Conclusion

In this chapter we have investigated D-brane potentials in the background of the warped

resolved conifold (WRC) and applied this to give a model of natural inflation. The

potentials arise as perturbations to the ISD solution from the gluing of the warped
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throat to a bulk Calabi-Yau. These perturbations are the solutions to the Laplace

equation on the unwarped resolved conifold (RC). We know the exact solutions to this

equation, valid anywhere within the throat, in particular at the tip. This is not the

case for the warped deformed conifold geometry, in which the solutions to the Laplace

equation on the deformed conifold are only valid in the mid-throat region, far from

the tip. This allowed us to exploit the effect of the warping, which is strongest at the

tip. We inflated using a periodic angular coordinate which had a potential involving

a cosine of this coordinate, giving us a model of natural inflation. We now summarise

how we achieved a Planckian decay constant for our natural inflation potential, given

the difficulty this has posed in previous attempts at embedding natural inflation in

string theory.

A crucial ingredient in this respect is the choice of inflating with a D5-brane rather

than a D3-brane. Using first a D3-brane, we found that we couldn’t obtain a Planckian

decay constant. Increasing the number of D3’s increases the decay constant but the

amount required has been shown to yield a large backreaction [166].

We then considered instead a wrapped D5-brane probe, with electric flux turned

on along the wrapped directions. We found it was possible to get a Planckian decay

constant for this probe and simultaneously set the energy scale of inflation to be the

GUT scale, whilst maintaining control over the backreaction and supergravity approx-

imation. This is because the pullback of the DBI action to the D5-brane worldvolume

produces a dependence on the warp factor through the term F1/2, which is not present

in the case of the D3-brane.

The term F is proportional to the warp factor and by setting the initial conditions

such that the D5-brane begins at a small radial displacement compared to the length-

scale u, allows for F1/2 to be large, as emphasised in (4.58). Since the decay constant

f is proportional to pF1/2, as shown in (4.56), one can achieve a Planckian value for

the decay constant by either a large p or a large F1/2. In our case we choose F1/2 to

be large, as it has already been shown that choosing a large p would lead to a large

backreaction as the brane would become very heavy. Having some moderate wrapping

p > 1 is helpful however, since in the case of no wrapping a Planckian decay constant

can only be achieved for an extreme hierarchy of rmin � u, which would be difficult to

achieve. The choice of moderate p and the initial radial position of the D5-brane near

the tip allows for a Planckian f .

The presence of 2-form flux q is not crucial for the Planckian f , as it does not enter

directly into the expression for f , as long as we use the AdS5×S5 approximation valid

near the stack of branes at the tip. However, q does appear in the CS action for the

D5-brane, and so a non-zero q is crucial in order to get a cosine potential term in the

first place, coming from the solution to the Laplace equation on the resolved conifold.

By (4.66), this potential is proportional to q and so this can be chosen to set the overall
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energy scale of the natural inflation potential to be MGUT .

We found that we could tune one coefficient of a solution to the Laplace equation to

arrange for a stable minimum in the radial direction which is very close to the tip. The

slope of the potential was found to be much greater in the radial direction than in the

angular direction. We can arrange for inflation to begin once the brane has stabilized

in the radial direction, with inflation solely along the angular direction. Enough e-folds

are produced if inflation begins near the top of the potential in the angular direction.

Estimates of the backreaction for the case of a wrapped D5-brane were presented

in Appendix A.1 where it was shown that there is a choice of stringy parameters for

which the supergravity and probe brane approximations are valid. In Appendix A.2,

we investigated corrections to the potential when the noncompact limit approximation

is relaxed, to include the effects of a nonzero 4D Ricci scalar. This involved solving

the Poisson equation on the RC, using the Green’s function method outlined in [162].

The leading order term only contributed at fourth order in the small radial coordinate,

subleading to other terms in the potential. It had a very small effect on the value of

the radial coordinate at the minimum.

Future work, outside the scope of this thesis, could explore more general motion

in both the radial and the other angular directions in the WRC. We focussed in this

chapter on slow roll inflation in an angular direction near the tip of the WRC. This

could also be extended to the case of relativistic branes and to a DBI spinflation scenario

on the WRC. Given that one knows the explicit form of the solutions of the Laplace

equation and the Green’s function on the whole of the RC, one could easily broaden

this study to explore other regions of the RC throat.

We have not presented how to stabilize the closed string moduli within the RC

throat, as it can’t support non-trivial (2,1)-form flux, required to stabilize the bulk

complex structure moduli and the axiodilaton, whilst preservingN = 1 supersymmetry.

Future work could investigate complex structure moduli stabilization in the RC - in

particular, supersymmetry breaking (3,0)-fluxes may present a way forward, and may

lead to supersymmetry broken at a high scale. One could also ask how Kähler moduli

stabilization is affected, and its cosmological implications. This could also impact on

the stabilization of the axiodilaton as well. In addition, the idea of the decoupling of

closed string moduli from open string moduli could be pursued.

Finally, an interesting broad question arising from this work is whether observable

values of r can be achieved in general from D3-brane inflation and to what extent one

is forced to consider objects such as wrapped D5-branes or other brane constructions

in order to produce a large value of r within a warped throat setup.
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Chapter 5

Asymmetry and Non-Gaussianity

This chapter contains material discussed in Kenton, Mulryne and Thomas, [2], in collab-

oration with my supervisors, Steven Thomas and David Mulryne. It aims to explain

the observed CMB power asymmetry through using a multiple-field inflation model.

Previous work explaining the asymmetry with a multiple-field inflation model had a

zero value for the local trispectrum, gNL, and a non-zero value for the local bispectrum,

fNL, which was too large to be consistent with observations.

In this work, we consider a higher-order term in the δN expansion for the CMB

power asymmetry generated by a superhorizon isocurvature field fluctuation. The term

can generate the asymmetry without requiring a large value of fNL. Instead it produces

a non-zero value of gNL. A combination of constraints leads to an allowed region in

fNL−gNL space. To produce the asymmetry with this term without a large value of fNL

we find that the isocurvature field needs to contribute less than the inflaton towards

the power spectrum of the curvature perturbation.

This work has been used and built upon in the recent work of [213, 214], where

the authors allowed for a scale-dependent non-Gaussianity to describe the asymmetry

- which was also recently shown to be scale-dependent [215] (see also earlier work on

scale-dependence, e.g. [216]).

5.1 Introduction

Inflation is widely accepted as the likely origin for structure in our universe. Its

generic predictions of a nearly scale invariant and close to Gaussian primordial cur-

vature perturbation, ζ, have been confirmed with increasing precision by successive

Cosmic Microwave Background (CMB) experiments. There are, however, also observa-

tional anomalies which are harder to explain within the standard inflationary paradigm.

One such anomaly is the hemispherical power asymmetry – the observation that for

scales with l ≤ 60 there is more power in CMB temperature fluctuations in one half
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of the sky than the other. First identified in the Wilkinson Microwave Anisotropy

Probe data [217–220], it was later confirmed by the Planck collaboration [221] and oth-

ers [222–224], with around a 3-σ significance on large scales, although its significance

remains disputed [225]. It’s an anomaly in the sense that it isn’t expected to occur in a

ΛCDM model, and the reported p-value (i.e. the probability to find an asymmetry at

least as strong as the one measured in our CMB) is <∼ 0.01 [221, 223]. In this work we

treat the asymmetry as a real effect which requires a primordial origin. So far, CMB

data has been fitted to a template which models the asymmetry as a spatially linear

modulation.

The leading primordial explanation for this asymmetry is the Erickcek-Kamionkowski-

Carroll (EKC) mechanism [226, 227], in which a long-wavelength isocurvature pertur-

bation modulates the power on shorter scales. Further work investigating this effect

includes Refs. [228–236]. The origin of the long wavelength mode may be explicitly

realised in the open inflation scenario of [229] or due to a domain wall, as in, for

example, [237,238].

The δN formalism provides a convenient expression for the modulation of power by

a super-horizon mode, as reviewed below. In principle many terms in this δN expan-

sion can contribute to the observed asymmetry. Until now, however, most theoretical

work has focused on the leading term, which can have the form of a spatially linear

modulation.

If the leading term in δN is responsible for the asymmetry then a further conse-

quence is that the local bispectrum parameter must satisfy the constraint fNL
>∼ 30β

[228]9 on the scales that are modulated, where β is an order one constant depending on

assumptions of the model. A value of β < 1 can be achieved but only if our observable

universe is located at a fine-tuned region within the long-wavelength perturbation [228],

and otherwise can be much larger than one. Combined temperature and polariza-

tion data bounds a purely scale-independent local bispectrum as fNL = 0.8 ± 5.0 at

68%CL [85], while we work with |fNL|<∼ 10 as a rough 95%CL. The asymmetry appears

to be scale dependent [239], and hence the non-Gaussianity produced must also be, but

there are no direct constraints on such a strongly scale dependent non-Gaussianity. A

new parametrisation of the scale-dependence of the non-Gaussianity and its applica-

tion to the scale-dependence of the asymmetry was given in [240], which includes an

accompanying gNL. It is, however, perhaps unlikely that a very large value of fNL could

be accommodated by current observations, even if fNL decays with scale.

In this short chapter, therefore, we investigate whether the next term in the δN

expression for the asymmetry could instead be responsible. We find it can, without

violating any other observational or self-consistency constraints. It contributes a more

9Without considering our position within the modulation, and with slightly different numerical
values [235] earlier found fNL

>
∼ 66.
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general modulation of the power, leading to an asymmetry, which does not necessarily

only involve a spatially linear modulation10. Using this higher-order term requires a

non-zero value of gNL, but allows for a smaller value of fNL than when the linear term

alone contributes. If this higher-order term is responsible for the asymmetry, then the

allowed parameter space indicates the modulating isocurvature field must contribute

less than the inflaton towards the total power spectrum of the curvature perturbation

on scales which are modulated, and this may be considered a fine-tuning of the model.

Related to this, we find that if this higher-order term is dominant in our observable

patch, then in certain neighbouring patches the linear term will instead be dominant.

In this work, as a first step we only focus on one of the higher-order terms, but

the idea is more general and could be applied to a combination of higher-order terms.

Satisfying the constraints in that case might be more complicated than the simple use

of exclusion plots that we employ here.

5.2 Generating the Asymmetry

The δN Formalism

Our calculation is performed within the δN formalism [22, 37, 40, 41, 241] which states

that ζ can be associated with the difference in the number of e-folds undergone by neigh-

bouring positions in the universe from an initial flat hypersurface at horizon crossing

to a final uniform density one when the dynamics have become adiabatic: ζ = δN . On

the flat hypersurface the inflationary fields are not constant, and by writing N as a

function of the fields, δN can be written as a Taylor expansion in the horizon crossing

field fluctuations.

We consider two scalar fields, though our work easily generalises for more than two

fields, and we take both our fields to have canonical kinetic terms. We choose the

inflaton field, denoted φ, to be the direction in field space aligned with the inflationary

trajectory at horizon exit, t∗, so that ε∗ = ε∗φ and this implies the derivative of N with

respect to the inflaton is a constant

N,φ = (2ε∗)−1/2. (5.1)

The isocurvature field orthogonal to φ is denoted χ, and the curvature perturbation

has contributions from both fields

ζ = N,φδφ+N,χδχ+
1

2
N,χχδχ

2 +
1

6
N,χχχδχ

3 + ... (5.2)

10To the best of our knowledge, no current data analysis has been performed using a template
involving these more general modulation terms.
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where we have neglected terms with higher-order φ derivatives since they are negligible.

The arguments of N and its derivatives are usually taken to be the average values of

the fields within our observable universe, denoted φ0 and χ0, while δφ and δχ contain

all fluctuations in φ and χ with wavelengths of order the size of our observable universe

or less.

The power spectrum of the curvature perturbation is then given by

Pζ = N,IN,I

(
H

2π

)2

(5.3)

where I runs over {φ, χ}, the summation convention has been used, and we have ne-

glected higher-order δφ and δχ correlators.

Non-Gaussianities in ζ are generated because of the non-linear relationship between

ζ and δχ in (5.2). In particular, one finds for the local bispectrum, fNL, and trispec-

trum, gNL, parameters that [242,243]

fNL =
5

6

N,χχN
2
,χ

(N,IN,I)2
(5.4)

gNL =
25

54

N,χχχN
3
,χ

(N,IN,I)3
. (5.5)

In what follows we will only be concerned with the magnitude of fNL and gNL , |fNL|
and |gNL|, but to avoid clutter we will drop the absolute symbols. We will also use the

expression for the tensor-to-scalar ratio

r =
8

N,IN,I
(5.6)

and we will find it convenient to define the contribution of χ to the total power spectrum

x ≡ Pχ
Pζ

=
N2
,χ

N,IN,I
= 1− r

16ε∗
. (5.7)

Superhorizon Fluctuation

In addition to the background value of the fields inside our observable universe, {φ0, χ0}
and their fluctuations with wavelength inside our observable universe, {δφ, δχ}, the

EKC mechanism works by postulating a superhorizon field fluctuation in χ, denoted

∆χ(x), with wavelength, k−1
L , much larger than the size of our observable universe, this

size given by the distance to the last scattering surface, xd, such that kLxd � 1. We

assume the leading order behaviour ∆χ(x) = ∆χ(n̂ · k̂L) for x within our observable

universe, where n̂ = x/|x| and k̂L = kL/|kL|, and we don’t assume any particular form

for the fluctuation outside of our observable patch. Note that in this paper we take
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∆χ to be the maximum variation in χ across our patch about our observable universe’s

average field value χ0 as seen in the left panel of Fig 7 11.

Superhorizon fluctuations source multipole moments in the CMB, upon which there

are constraints from the observed homogeneity of the universe [226,227]. Using the non-

linear results of [228], together with the multipole constraints from [227], we have the

following homogeneity constraints from the quadrupole and octupole respectively 12

|N,χχ

(
∆χ
)2 | < 1.1× 10−4 (5.8)

|N,χχχ

(
∆χ
)3 | < 8.6× 10−4 (5.9)

where we have assumed no cancellation between δN terms. We also take the following

constraint

|N,χ∆χ| < aP
1/2
ζ (5.10)

where Pζ = 2.2× 10−9 [244] and a is some threshold parameter.

Asymmetry

The superhorizon fluctuation modulates the power spectrum on shorter scales, and so

it depends on the direction n̂ through

Pζ [n̂] = Pζ [χ0 + ∆χ(n̂)]. (5.11)

Since ∆χ(n̂) < ∆χ in our patch, and ∆χ is small, we can Taylor expand Pζ in (5.11)

in powers of ∆χ(n̂) giving

Pζ [n̂] = Pζ

(
1 + 2

∞∑
m=1

Am(n̂ · k̂L)m

)
(5.12)

where the round brackets indicate multiplication,

Am ≡
1

2Pζ

(∆χ)m

m!

∂mPζ
∂χm

(5.13)

11 These properties are in contrast to the ∆σ(x) of Ref. [228] which is a long wavelength fluctuation
around the background field value, σbg, of the entire universe which is much larger than our observable
patch. Our results can be matched to the results of their section 6, with our χ0 replacing their
σbg + ∆σ̃ cos θ, and our ∆χ replacing their kLxd∆σ̃ sin θ. One might demand |N,χχχ (∆σ̃)3 | < 1 which
is in fact satisfied by (5.9) for kLxd ≈ 0.1.

12The hexadecapole will also receive contributions from N,χχχ though it appears suppressed by
powers of kLxd meaning if it satisfies the octupole constraint it will also satisfy the hexadecapole, and
similarly for higher derivatives and multipoles.
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and we have used the shorthand that when Pζ and its derivatives appear without an

argument they are taken to be evaluated at the average field values of the observable

universe. Observations indicate a power asymmetry, with the power along the preferred

direction n̂ = k̂L being greater than the power on the opposite side of the sky n̂ = −k̂L.

We note that only the odd m terms in (5.12) can contribute towards an asymmetry of

this sort, with the even terms contributing only towards general anisotropy.

Usually only the m = 1 term is kept, and the data has been fitted to this with the

result that [221] A1 = 0.07. The m = 1 and m = 2 terms were considered in [240] 13.

Here we consider instead the m = 3 term, since this can contribute towards asymmetry
14. Ideally a fit to the data with m = 1, 2, 3 terms should be done to constrain the

parameters A1, A2 and A3. In the absence of this, we will look at the simplest case

involving only the m = 3 term and take 15 A3
>∼ 0.07.

Linear Term Asymmetry

It has been noted in e.g [228, 231, 235] that a large fNL accompanies the asymmetry

when only the m = 1 term is considered, and we briefly review this now. Differentiating

(5.3) gives

A1 =
N,χχN,χ∆χ

N,IN,I
. (5.14)

We now combine this with constraint (5.8) giving

fNL ≈
5N,χχN

2
,χ

6(N,IN,I)2
>∼ 37

(
A1

0.07

)2

, (5.15)

which is outside of the observational bounds for a local-type non-Gaussianity 16.

Cubic Term Asymmetry

The asymmetry may be due to multiple odd m terms in (5.12). We will now show

that postulating the cubic m = 3 term is dominant over the linear m = 1 term,

and is responsible for the asymmetry, allows the constraint on fNL to be relaxed, but

13Although the authors of [240] claim the limit 2A2 = 0.002± 0.016, which they inferred from [245],
we think [245] only constrains a term in Fourier rather than real space (k̂ · Êcl)

2, and so to the best of
our knowledge there is no direct bound on A2.

14One might worry that the second and third order terms in (5.2) become of comparable size for
asymmetry generated by the m = 3 term and so loop corrections to fNL may be important, changing
the expression for fNL in (5.4). However one can check these loop corrections to fNL are subdominant
to the tree level term for ∆χ > δχ.

15We expect this to be >
∼ 0.07 since the area under a cubic curve is less than the area under a linear

curve if they share the same endpoints.
16Different authors have used slightly different values for the quadrupole and octupole, and the value

of A, leading to other numbers appearing in (5.15) ranging from 30− 70.
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introduces new ones on gNL. Later we will check the self-consistency of ignoring the

m = 1 term compared to the m = 3 one.

Differentiating (5.3) three times gives

Pζ ,χχχ
Pζ

=
6N,χχχN,χχ + 2N,χχχχN,χ

N,IN,I
. (5.16)

We will be interested in the case where the asymmetry is generated by the N,χχχN,χχ

term, and we neglect N,χχχχ, so that our asymmetry is given by 17

A3 =
N,χχχN,χχ(∆χ)3

2N,IN,I
. (5.17)

In this case, we now show there is still a lower bound on fNL, but this time it depends

on x defined in (5.7). Using (5.17) together with the octupole constraint (5.9), we find

fNL ≈
5N,χχN

2
,χ

6(N,IN,I)2
>∼ 9.5

(
A3

0.07

)( x

0.07

)
. (5.18)

We see that if x is sufficiently small, we can have an acceptably small fNL in this

scenario. We will later show that there is a lower bound x>∼A3, and so 9.5 is the

smallest value of fNL allowed from this cubic term alone 18, which is an improvement

compared to the contribution from the linear term alone.

Consistency Checks

For simplicity we assumed that the asymmetry is only due to the m = 3 term in (5.12),

which then must be larger than the m = 1 term. We therefore require

N,χχχN,χχ(∆χ)2

2N,χχN,χ
> 1. (5.19)

Even powers of ∆χ don’t contribute towards the asymmetry but they do still cause

more general anisotropy of the power spectrum. Since these anisotropies have not been

observed, we also demand the following

N,χχχN,χχ∆χ

N,χχχN,χ
> b (5.20)

and
N,χχχN,χχ∆χ

N2
,χχ

> c (5.21)

where b, c are some threshold parameters.

17We consider the N,χχχχN,χ term in the conclusion, noting that this term may avoid a large fNL,
introducing a non-zero hNL instead.

18Although one can get a value of 7 if both m = 1, 3 terms contribute equally A1 = A3 = 0.035.
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Figure 7: Left : The value of χ varies by an amount ∆χ from its average value, χ0, within
our observable universe (the interior of the two vertical lines), due to the long-wavelength
fluctuation (solid wave). The average within our observable universe (long-dashed line)
is not necessarily the same as the background value over the entire universe (dotted
horizontal line). Right : Exclusion plot for (5.22)-dark-blue, (5.23)-orange, (5.24)-green,
(5.25)-red, (5.26)-purple, (5.27)-brown, with x = 0.07, a = 10, b = 0.25 and c = 1. The
red and brown lines are hard to see on this scale at the bottom of the plot. The allowed
region is left white.

There is a lower limit on x = x(χ0) coming from x(χ0 − ∆χ) > 0, by definition

(5.7). Expanding out x(χ0−∆χ) to cubic order and neglecting the linear term, we find

x(χ0)>∼A3 for b, c ∼ O(1).

Allowed Parameters

We have six constraints to simultaneously satisfy: (5.8), (5.9), (5.10), (5.19), (5.20)

and (5.21). Using (5.17) to substitute for ∆χ, and using (5.4), (7.55) and (5.6) the six

constraints become, respectively,

gNL >
( x

0.07

)( A3

0.07

)
4.3× 103f

1/2
NL (5.22)

fNL >
( x

0.07

)( A3

0.07

)
9.5 (5.23)

gNL >
( x

0.07

)4
(
A3

0.07

)
1.8× 107a−3/2f−1

NL (5.24)

gNL >
( x

0.07

)( A3

0.07

)−2

19f2
NL (5.25)

gNL <
( x

0.07

)−2
(
A3

0.07

)
19b−3f2

NL (5.26)

gNL >
( x

0.07

)−1/2
(
A3

0.07

)−1/2

6.7c3/2f2
NL. (5.27)

In the right panel of Fig 7 we plot the allowed region, left in white, for (5.22)-(5.27),
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with x = A3 = 0.07, a = 10, b = 0.25 and c = 1. We chose these values for the

parameters so as the highlight that values of around fNL ≈ 10 and gNL ≈ 105 are

possible with these constraints. Other values are also possible, though not shown here.

We find that the cubic term can generate the required asymmetry with a lower value

of fNL than from the linear term alone. Moreover it requires a non-zero value of

gNL >∼ 5 × 104 for the smallest allowed values of fNL. Note that if x is much bigger

than 0.07 then this pushes the allowed values of fNL and gNL up. The small value of

x = 0.07 may be considered a fine-tuning required when only the m = 3 term generates

the asymmetry.

Outside Our Observable Patch

In the above we neglected the first order m = 1 term in (5.12), assuming that this

term is small in our observable universe. However, since we are considering a scenario

in which N,χχ and N,χχχ are non-zero, neighbouring regions of the universe with a

different background field value may have a larger first order term. This is closely

related to a similar effect in inhomogeneous non-Gaussianity [246–250]. If this term is

larger in neighbouring patches this would not violate observational bounds, but would

imply that our position within neighbouring regions was finely tuned – in the sense

that neighbouring regions would instead see a dominant first order term. Although

not invalidating the proposed scenario, it would make it less appealing. The biggest

change in the average value of χ is in a neighbouring patch along the direction of the

long wavelength mode, where its average value is of order χ0 + ∆χ, since ∆χ > δχ.

The first order term in these patches is then of order

N,χχN,χ

∣∣∣
χ0+∆χ

=N,χχN,χ

∣∣∣
χ0

+ ∆χ(N2
,χχ +N,χχχN,χ)

∣∣∣
χ0

+
3

2
(∆χ)2N,χχχN,χχ

∣∣∣
χ0

+ ...

(5.28)

where we have neglected fourth and higher derivatives of N . The order ∆χ term in

(5.28) is related to the zeroth order term by

∆χ(N2
,χχ +N,χχχN,χ)

N,χχN,χ

∣∣∣
χ0

> (b+ c) (5.29)

and so these terms are of comparable order for b, c = O(1) and if (5.20) and (5.21) are

not hierarchical inequalities. The order (∆χ)2 term in (5.28) is related to the zeroth
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order term using (5.19)

3(∆χ)2N,χχχN,χχ

2N,χχN,χ

∣∣∣
χ0

> 3 (5.30)

so we see that the first order term in ∆χ in (5.12) in these neighbouring patches will

actually be of the same order or larger than the cubic one in our own patch which

we consider to be responsible for the asymmetry. This then implies that in these

neighbouring patches the value of fNL is necessarily larger than in our own patch.

This agrees with the result of [251] that if gNL � fNL in our observable patch, then

neighbouring patches will generically have a larger value of fNL than in our own. If

the asymmetry in our patch is due to the third order term rather than the linear term,

then our patch should be considered fine-tuned compared to its neighbours along the

direction of the long wavelength mode.

5.3 Conclusion

We have presented a mechanism involving a modulating isocurvature field which can

produce the required hemispherical power asymmetry while satisfying the homogeneity

constraints, and which produces non-Gaussianity within observational bounds. A novel

feature is the non-zero value of gNL required to generate this asymmetry. We note that

there are models with a large gNL and small fNL, for example, [252] and [253]. A

requirement on the model is that the isocurvature field contributes a small amount

towards the power spectrum of the curvature perturbation, which could be considered

a fine tuning. We also note that the large minimal value of gNL required implies

our observable patch of the universe has a significantly smaller value of fNL than our

neighbours. The observed asymmetry is scale dependent, with a smaller asymmetry on

small scales, which this model does not account for.

Moreover, if asymmetry is third order rather than first order, it is considered a

fine-tuned situation since one would normally expect the first order term in a Taylor

series to contribute more than a third order term if the series is to be applicable.

If the observed asymmetry is due to the higher-order term considered in this work,

then this will put strong bounds on fNL and gNL. Measurements of fNL and gNL

outside of our allowed region would falsify models which use this cubic term to generate

the asymmetry.

The cubic term has a different n̂-dependence compared to the first order term. For

this paper we assumed A3
>∼ 0.07, but we would like to see a fit to the data with the

m = 1, 2, 3 terms, in order to properly constrain the parameters A1, A2 and A3.

This study has shown that a higher-order term can generate the required asym-

metry, relaxing the constraint on fNL compared to that generated only by the first
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order. Perhaps the other cubic order term in (5.16), N,χχχχN,χ, may also contribute –

although the bound on the non-linear parameter, hNL [254], associated to this term is

considerably weaker than that on gNL, and so this term is not as easily falsifiable. In-

deed, since the third order term can have a large contribution, other higher-order terms

(and combinations of them) may also be significant. Our work prompts investigation

of the case where δN can’t be Taylor expanded.
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Chapter 6

The Squeezed Limit of the

Bispectrum in Multi-Field

Inflation

This chapter contains material discussed in [3] in collaboration with my supervisor,

David Mulryne.

The aim of the chapter is to provide the first calculation of the squeezed limit of

the bispectrum produced by inflation with multiple light fields. In the next chapter,

Chapter 7, we generalize these results to calculate soft limits of higher-point correlators.

To calculate the squeezed limit of the bispectrum from multi-field inflation we allow for

different horizon exit times for each mode and calculate the intrinsic field-space three-

point function in the squeezed limit using soft-limit techniques. We then use the δN

formalism from the time the last mode exits the horizon to calculate the bispectrum of

the primordial curvature perturbation. We apply our results to calculate the spectral

index of the halo bias, nδb, an important observational probe of the squeezed limit

of the primordial bispectrum and compare our results with previous formulae. We

give an example of a curvaton model with nδb ∼ O(ns − 1) for which we find a 20%

correction to observable parameters for squeezings relevant to future experiments. For

completeness, we also calculate the squeezed limit of three-point correlation functions

involving gravitons for multiple field models.

6.1 Introduction

Reliable calculations of the N-point correlation functions of the primordial curvature

perturbation, ζ, are essential to confront models of inflation with present and future

observational constraints. Since inflation can occur at energies as high as 1014GeV,

these correlation functions provide an unparalleled observational window into high en-
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ergy physics, providing information about the fields and their interactions active in the

early universe. In this chapter we consider the three-point correlation function, and

discuss how it can be calculated in a particular limit, known as the ‘squeezed limit’.

Our primary aim is to provide clarity on how to accurately confront models of inflation

with more than one light field against observations sensitive to this limit. This includes

models in which more than one field supports inflation, as well as spectator models such

as the curvaton scenario and modulated reheating models – we refer to such models as

multi-field models, and exclude cases in which additional heavy fields play a role.

The three-point function, parametrised by the bispectrum, is a function of three

wave vectors which sum to zero as a result of momentum conservation, forming a

triangle in momentum space. The squeezed limit refers to the case where one of the

associated wave numbers is much smaller than the other two, such that the triangle

looks ‘squeezed’. Calculations of the three-point function are now extremely mature, yet

for technical reasons previous multiple field calculations have only been been performed

explicitly for the case of a mild hierarchy between wave numbers, as we will see. The

highly squeezed limit is, however, very important both from an observational and a

theoretical point of view.

The squeezed limit of the the bispectrum is the simplest possible example of a

more general class of limits of correlation functions, referred to as soft limits. Soft

limits occur when there exists a separation of scales in a physical problem. In the

inflationary context, soft limits of correlation functions of the primordial curvature

perturbation offer an exciting opportunity to confront theory with observations. For

example, in the case of a single slow-roll field with canonical kinetic terms, Maldacena

[36] found that the bispectrum of the curvature perturbation in the squeezed limit is

purely determined by the tilt of the power spectrum, with the assumption of a Bunch-

Davies initial state. The relation is: 12f sq
NL = −5(ns − 1), where f sq

NL is the squeezed

limit of the reduced bispectrum, and ns − 1 = −0.032 ± 0.006 [65] is the spectral tilt.

Creminelli & Zaldarriaga [84] (see also Ref. [255]), showed that Maldacena’s result holds

even without the assumption of slow-roll19 in all models with a Bunch-Davies initial

state and where the classical solution is a dynamical attractor – the proof of which was

later formalized by Cheung et al. [83]. Thus a detection of f sq
NL

>∼O(0.01) would rule out

all single field models with a Bunch-Davies initial state and where the classical solution

is a dynamical attractor20. For single field inflation, considerable work has also gone

into studying more general soft limit results and providing further consistency relations

amongst correlation functions [30, 61, 258, 260–279]. Moreover, soft limits can be used

to provide information about other fields present during inflation [280–287].

19See, for example, [256,257] for single field, but non-slow-roll models which obey Maldacena’s rela-
tion.

20See [258] (and e.g. [259]) where more general initial states are considered, and see [260] (and
references therein) where non-attractor models are considered.
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In the case of inflation with multiple light fields, in contrast to the single field case,

model independent results such as the Maldacena consistency relation are not possible.

However, many observables which constrain non-Gaussianity produced by multiple field

inflation are particularly sensitive to soft limits. Examples include21 the spectral index

of the halo bias [291] and CMB µ-distortions [292]. This is why explicit calculations of

soft limits in the multiple field context are important when comparing model dependent

predictions against observation.

In this chapter, as a starting point to more general studies of soft limits in multiple

field inflation, we explore the simplest case of the squeezed limit of the bispectrum.

In most previous studies, the path to the bispectrum for multiple field models has

been to first use the in-in formalism to calculate the three-point function of scalar

field perturbations at a time soon after all modes have left the horizon, as was first

done by Seery & Lidsey [43]. Next the δN formalism [37, 40] is applied to convert

the field-space correlations to correlations of ζ [41]. The result of Seery & Lidsey for

the three-point function, however, requires that there is not a large hierarchy between

the three wavenumbers involved in the bispectrum, and thus that the modes of the

bispectrum must cross the horizon during inflation at roughly the same time. As is

clearly stated in their paper, therefore, their result is not valid in the highly squeezed

limit where there is an appreciable difference in the exit times of different modes.

Moreover, on using δN to convert from field-space fluctuations to ζ, one finds that

the three-point function of the curvature perturbation involves copies of the two-point

function of field fluctuations evaluated after all modes have exited the horizon. At this

point in the procedure, previous explicit calculations have considered at most a mild

hierarchy between the scales at which these two-point functions are evaluated [45,293],

with | log(k1/k3)| ∼ O(1), where k1 is the long-wavelength mode, and k3 is the short-

wavelength mode.

Future experiments, together with the expected amount of squeezing they will be

sensitive to, are shown in Table 5 [293]. These experiments will probe a hierarchy

much larger than that allowed by previous theoretical calculations. Therefore, it is

very important to have theoretical predictions for multiple field models valid in the

highly squeezed limit, to be able to compare with observations.

Experiment Dark Energy Survey CMB Euclid µ-distortions

Squeezing, log(k1/k3) ∼ −2 −7 −8 −19

Table 5: Experiment/experiment type and their observable range of scales.

21One might naively think that the long-wavelength fluctuations used to model the observed CMB
power asymmetry (see e.g. [2,240,288–290]) may also be an observational probe of soft limits – however,
to describe the asymmetry, the long wavelength mode is required to be superhorizon, and so won’t be
suitable as a soft momentum in the correlation functions considered in this chapter.
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In our study, therefore, we wish to relax the requirement of a mild hierarchy, and

study models explicitly in the highly squeezed limit. To do so we will use a similar soft

limit argument to Cheung et al. [83], but applied to calculate the three-point function

of the scalar field perturbations. This result reduces to that of Seery & Lidsey for

mild squeezing, but is valid in the highly squeezed limit and does not rely on slow-roll.

In analogy with the single field case, where the three-point function depends on the

tilt of the power spectrum, we find that the three-point function of the scalar field

perturbations depends on derivatives of the field space two-point function with respect

to the background value of the fields. Armed with this result, we further relax the usual

assumption that the copies of the two-point function of the field perturbations, which

appear in the three-point function for ζ, involve only a mild hierarchy of scales. This

can easily be achieved by accounting for the evolution between horizon crossing times.

We find that for any model in which previous applications of the δN formalism give rise

to analytic results, analytic expressions for the highly squeezed limit are also possible.

We finish by considering a specific curvaton model and compare our new squeezed limit

formulae with previous expressions. We find significant differences for cases in which

non-Gaussianity depends on scale.

The outline of this chapter is as follows: in §6.2 we conveniently parametrise the

evolution of the superhorizon field perturbations between exit times in terms of a ‘Γ-

matrix’, and calculate the three-point function of the scalar field perturbations at the

time the last mode exits the horizon using soft-limit arguments. Putting these elements

into the δN formalism we calculate the highly squeezed limit of the bispectrum of the

curvature perturbation. In §6.3 we calculate the scale dependence of the squeezed limit

of the reduced bispectrum, focussing on the spectral index of the halo bias. In §6.4 we

provide explicit formulae for the Γ matrix, and investigate the concrete example of the

mixed inflaton-curvaton scenario [294] with self-interactions [240].

Throughout this chapter we work in units where ~ = c = 1 and we set the reduced

Planck mass Mp = 1. For a review of the δN formalism and the notation we use in

this chapter, see Section 2.2.6.

6.2 The squeezed limit of the bispectrum with δN

In this chapter we wish to extend previous work to explicitly calculate the bispectrum at

the late time, tu, on a uniform-density slice, in the case of a truly squeezed momentum

configuration, k1 � k2 ≈ k3, which will involve (perhaps very) different horizon exit

times t1 � t2 ≈ t3. To do so we will employ expression (2.66), setting T = t3, but will

fully account for the different horizon crossing times, and also show how to calculate

α
(3)
ijk for highly squeezed configurations. In contrast to Section 2.2.6, the new objects

we need to calculate are Σ
(3)
ij (k1), the field perturbation two-point function for modes
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which cross the horizon at time t1 evaluated at the later time t3, and α
(3)
ijk(k1, k2, k3)

for the k1 � k2 ≈ k3 configuration. Many authors have discussed how to propagate

the field-space two-point correlation function past horizon crossing [20, 21, 42], but to

the best of our knowledge no one has then employed these techniques to explicitly

investigate the bispectrum of ζ beyond cases of mild squeezing. Moreover, to the best

of our knowledge we are the first to attempt a calculation of α
(3)
ijk(k1, k2, k3) in the

squeeezed limit using a background wave method22 which generalizes most easily to a

result which is independent of a slow-roll assumption.

We proceed to discuss how to calculate each of these objects now, and then combine

them to compute the bispectrum of ζ in the squeezed limit for multiple field models.

6.2.1 Field evolution between different crossing times

The first task is to calculate Σ
(3)
ij (k1). To do this we need to account for the evolution

of the field-space perturbations on a flat hypersurface with wavenumber k1 between

the time this wavenumber crosses the horizon and the later time t3. We choose to

approach this problem in a manner closely connected with the δN framework, and

which therefore provides a unified treatment of the overall problem. It will also make

transparent the cases in which analytic progress can be made.

Returning to the separate universe picture, perturbations at time t3 are defined by

δφ
(3)
i (x) ≡ φ(3)

i (x)− φ(3)
i (6.1)

where φ
(3)
i (x) is the true value, and φ

(3)
i without an x argument is the homogeneous

background value. In general, for a given i, φ
(3)
i (x) will depend on the value of all the

fields and field velocities at the earlier time t1. Assuming, however, slow-roll between

t1 and t3, the fields velocities become functions of the fields. One can write therefore

δφ
(3)
i (x) = φ

(3)
i (φ

(1)
j (x))− φ(3)

i (6.2)

= φ
(3)
i (φ

(1)
j + δφ

(1)
j (x))− φ(3)

i . (6.3)

In analogy with the δN expression, one can Taylor expand this in the perturbation

δφ
(1)
j (x) to give

δφ
(3)
i (x) = δφ

(1)
j (x)

∂φ
(3)
i

∂φ
(1)
j

+ ... (6.4)

22Although similar results can be found in [262] using a Hamiltonian method and [295] using a
second-order perturbation theory method. See also [296, 297] where α in the squeezed limit was given
in terms of OPE coefficients. .
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In this chapter we won’t need the higher order terms. We use the shorthand

Γ
(3,1)
ij ≡

∂φ
(3)
i

∂φ
(1)
j

(6.5)

which we will often refer to as the ‘Γ-matrix’. We would like to emphasise that the

‘Γ-matrix’ used here is constructed using the background cosmology and is analogous

to N
(T )
i in (2.61). In Fourier space we have

δφ
(3)
i,k = Γ

(3,1)
ij δφ

(1)
j,k + . . . . (6.6)

Objects like the Γ matrices have been used by a number of authors in the past23

[38,55,56,298–302], and we note the properties: Γ
(a,a)
ij = δij , Γ

(c,b)
ki Γ

(b,a)
ij = Γ

(c,a)
kj and so

Γ
(c,a)
ki Γ

(a,c)
ij = δkj for arbitrary times ta, tb, tc. Moreover since ζ in (2.60) is independent

of T , at first order we find that

N
(b)
i δφ

(b)
i,k = N

(a)
i δφ

(a)
i,k (6.7)

and so we must have

N
(b)
i = N

(a)
j Γ

(a,b)
ji . (6.8)

We can now use the Γ matrices to relate correlation functions at different times,

and in particular using Eq. (2.67) we find

Σ
(3)
ij (k1) = Γ

(3,1)
ik Γ

(3,1)
jk Σ

(1)
ij (k1) = Γ

(3,1)
ik Γ

(3,1)
jk

H(1)2

2k3
1

(6.9)

While at one level Eq. (6.9) has simply swapped the unknown correlation matrix

Σ
(3)
ij (k1) for the unknown Γ

(3,1)
ik matrix, the point is that the problem has been re-

duced to a matter of solving the background cosmology, which must be done anyway

to apply the δN formalism. Moreover, in all models where the derivatives of N can be

calculated analytically, analytic expressions should also exist for the required Γ matrix,

as we will see in an explicit example below. On the other hand, if numerical tools are

needed to calculate the derivatives of N , similar tools can be applied to calculate Γ
(3,1)
ik .

The formulation in terms of Γ is therefore very convenient for explicitly studying the

squeezed limit.

23Γ can also be generalised to be k-dependent, as in [57].
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6.2.2 The field-space bispectrum in the squeezed limit

The next step is to calculate α
(3)
ijk(k1, k2, k3) in the squeezed limit. To do so we can

adapt an idea used by Maldacena [36] and subsequently other authors [83, 84] in the

single field context. The calculation relies on the following simplifying assumption: the

long wavelength mode k1 which exits the horizon at the first exit time, t1, can only

affect the much shorter wavelength modes, which at that time are still deep inside

the horizon, through its effect on the background cosmology. The k1 mode shifts the

background field configuration, and hence changes the background cosmology which is

felt by the two modes which exit later – producing a correlation between the k1 mode

and the two-point function of the k2, k3 modes in the shifted background.

In the single field case the calculation is performed directly with the modes of ζ

in the comoving gauge, and the shift in background cosmology induced by the long

wavelength mode exiting the horizon can be thought of as a shift in the time at which

the short modes exit. This leads to the three-point correlation function of ζ being

related to the tilt of the two-point function of the short modes, and to the famous

consistency relation of Maldacena24.

In the multiple field case we are calculating the three-point function of field pertur-

bations in the flat gauge, and the shift in the background cosmology induced by the

long wavelength mode exiting the horizon can be thought of as a shift in the background

field values. This won’t result in a simple consistency relation for ζ, but does allow

analytic progress to be made in calculating α in the highly squeezed limit.

To calculate α we follow a similar calculation to that in Cheung et al. [83] for 〈ζζζ〉
in the single field case. We show a derivation of the squeezed limit of α which relies on

slow-roll - though this derivation can be easily generalised to relax the assumption of

slow-roll. In the end the final result we get for the squeezed limit of 〈ζζζ〉 must rely on

a slow-roll approximation at the time of the last horizon crossing, t3, because we will

be using the δN formalism at that time.

We begin our calculation in position space, denoting short-wavelength perturbations

with a superscript S, and long-wavelength perturbations with a superscript L. We ask

how a short-wavelength two-point function 〈δφS(3)
j (x2)δφS

(3)
k (x3)〉 at t3 is affected by

a further long-wavelength perturbation δφL
(3)
i (x). To proceed, we evaluate the long-

wavelength fluctuation δφL
(3)
i (x) at the midpoint x = x+ ≡ (x2 + x3)/2. Then we

Taylor expand the short-wavelength two-point function around the value it would have

in the absence of the long-wavelength perturbation, denoting this value by a subscript

24Note that the consistency relation holds for all single field models with a Bunch-Davies initial state
and where the classical solution is a dynamical attractor.
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0. One finds

〈δφS(3)
j (x2)δφS

(3)
k (x3)〉

∣∣∣
δφL(3)

m (x+)
=〈δφS(3)

j (x2)δφS
(3)
k (x3)〉

∣∣∣
0

+ δφL
(3)
m (x+)〈δφS(3)

j (x2)δφS
(3)
k (x3)〉,m

∣∣∣
0

+ ...

(6.10)

where the subscript ,m denotes the partial derivative with respect to the background

field φ
(3)
m . At this stage we employ the simple soft limit argument discussed above

and assume that in the squeezed limit the three-point function in momentum space

will receive its largest contribution from the correlation between the long-wavelength

mode, which effectively shifts the background cosmology, and the short-wavelength

two-point function in the shifted background. This leads to

〈δφL(3)
i (x1)δφS

(3)
j (x2)δφS

(3)
k (x3)〉 ≈ 〈δφL(3)

i (x1)〈δφS(3)
j (x2)δφS

(3)
k (x3)〉

∣∣∣
δφL(3)

m (x+)
〉

(6.11)

≈ 〈δφL(3)
i (x1)δφL

(3)
m (x+)〈δφS(3)

j (x2)δφS
(3)
k (x3)〉,m

∣∣∣
0
〉 (6.12)

≈ 〈δφL(3)
i (x1)δφL

(3)
m (x+)〉〈δφS(3)

j (x2)δφS
(3)
k (x3)〉,m

∣∣∣
0

(6.13)

≈
∫

d3p

(2π)3

d3q

(2π)3
eip·(x1−x+)+iq·(x2−x3)Σ

(3)
im(p)Σ

(3)
jk,m(q)

∣∣∣
0
. (6.14)

In what follows we will drop the subscript |0 for notational ease. Now we insert 1 =∫
d3k1δ(k1 + p) to get

〈δφL(3)
i (x1)δφS

(3)
j (x2)δφS

(3)
k (x3)〉

≈
∫

d3k1

(2π)3

d3p

(2π)3

d3q

(2π)3
e−ik1·x1−ip·x++iq·(x2−x3)(2π)3δ(k1 + p)Σ

(3)
im(p)Σ

(3)
jk,m(q).

(6.15)

Changing the integration variables from p,q to k2 = 1
2p− q and k3 = 1

2p + q we find

〈δφL(3)
i (x1)δφS

(3)
j (x2)δφS

(3)
k (x3)〉

≈
∫

d3k1

(2π)3

d3k2

(2π)3

d3k3

(2π)3
e−ik1·x1−ik2·x2−ik3·x3(2π)3δ(k1 + k2 + k3)Σ

(3)
im(k1)Σ

(3)
jk,m(k3),

(6.16)

where we have used the relation q = k3(1 + O(k1/k3)). From (6.16) we can now

read off the squeezed limit of the momentum space three-point function of the field
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perturbations

lim
k1�k3,k2

〈δφ(3)
i,k1

δφ
(3)
j,k2

δφ
(3)
k,k3
〉 ≈ (2π)3δ(k1 + k2 + k3)Σ

(3)
im(k1)Σ

(3)
jk,m(k3) (6.17)

and so

lim
k1�k3,k2

α
(3)
ijk(k1, k2, k3) ≈ Σ

(3)
im(k1)Σ

(3)
jk,m(k3) (6.18)

This is a very general expression for the squeezed limit of α, independent of the mul-

tiple field model, relating the squeezed limit of the three-point function of the field

perturbations to the two-point function of the field perturbations and its derivatives

with respect to the background fields. It is one of the principal results of this chapter.

It only relied on slow-roll at time t3 in (6.10) where the Taylor expansion was done only

in terms of the field, rather than both the field and its velocity. If one promoted the

indices i to run over both fields and field velocities, then (6.18) with this more general

index notation would still hold, independent of whether slow-roll was valid at time t3.

At this stage we can make our result more explicit in the case where slow-roll is

valid between the horizon exit times t1 and t3. In this case, we can use the Γ evolution

between crossing times, which by (6.9) and (2.67) gives

α
(3)
ijk(k1, k2, k3) ≈ Γ

(3,1)
il Γ(3,1)

mn Σ
(1)
ln (k1)Σ

(3)
jk,m(k3) ≈ Γ

(3,1)
il Γ

(3,1)
ml δjk

H(1)2

2k3
1

[
H(3)2

]
,m

2k3
3

≈ −Γ
(3,1)
il Γ

(3,1)
ml δjk

H(1)2

2k3
1

H(3)2

2k3
3

dφ
(3)
m

dN
.

(6.19)

where the final line uses the slow-roll equations of motion for the background fields,

and for clarity we note that dN ≡ d log a is the local measure of e-folding time (and is

not related to the δN formula).

6.2.3 The squeezed limit of the bispectrum of ζ

We now have all the ingredients we need to calculate the bispectrum of ζ (2.66) in the

squeezed limit for multiple field inflation, and since we now use the δN formalism, the

results which follow in this and subsequent sections are only valid in slow-roll models.

The schematic picture of our approach is shown in Figure 8.

Putting α
(3)
ijk(k1, k2, k3) from (6.19) and Σ

(3)
ij (k1) from (6.9) into (2.66), with T 7→ t3,
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Figure 8: Schematic picture of δN evolution from time T = t3 onwards, using Σ
(3)
ij (k1)

from Subsection 6.2.1 and α
(3)
ijk(k1, k2, k3) from Subsection 6.2.2. The Γ-evolution of field

perturbations occurs between t1 and t3. The blue line is the comoving Hubble radius,
the solid red line is the inverse of the squeezed wavenumber, k1, while the solid black
lines are the inverses of the other wavenumbers, k2 and k3.

gives

lim
k1�k2,k3

Bζ(k1, k2, k3) ≈ −N (3)
i N

(3)
j N

(3)
j Γ

(3,1)
ik Γ

(3,1)
mk

H(1)2

2k3
1

H(3)2

2k3
3

dφ
(3)
m

dN

+N
(3)
i N

(3)
jk N

(3)
k

2Γ
(3,1)
im Γ

(3,1)
jm

H(1)2

2k3
1

H(3)2

2k3
3

+ δij

(
H(3)2

2k3
3

)2


(6.20)

and since k1 � k3 this can be simplified to

lim
k1�k2,k3

Bζ(k1, k2, k3) ≈ −N (3)
i N

(3)
j N

(3)
j Γ

(3,1)
ik Γ

(3,1)
mk

H(1)2

2k3
1

H(3)2

2k3
3

dφ
(3)
m

dN

+ 2N
(3)
i N

(3)
jk N

(3)
k Γ

(3,1)
im Γ

(3,1)
jm

H(1)2

2k3
1

H(3)2

2k3
3

(6.21)

which is one of the main results of this chapter. In Appendix B.1 we check that it

reduces to the Maldacena result [36] in the single field limit. In Appendix B.2 we check
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that our result for α in (6.19) agrees with the result of Seery & Lidsey [43] if we take

a near-equilateral limit.

We can then form the reduced bispectrum in the squeezed limit

lim
k1�k2,k3

6

5
fNL(k1, k2, k3) ≈ −

N
(3)
i Γ

(3,1)
ik Γ

(3,1)
mk

2N
(3)
l N

(3)
n Γ

(3,1)
lq Γ

(3,1)
nq

dφ
(3)
m

dN
+

N
(3)
i N

(3)
jk N

(3)
k Γ

(3,1)
im Γ

(3,1)
jm

N
(3)
l N

(3)
n N

(3)
p N

(3)
p Γ

(3,1)
lq Γ

(3,1)
nq

.

(6.22)

For convenience we define

B[α](k1, k2, k3) ≡ −N (3)
i N

(3)
j N

(3)
j Γ

(3,1)
ik Γ

(3,1)
mk

H(1)2

2k3
1

H(3)2

2k3
3

dφ
(3)
m

dN
(6.23)

6

5
f

[α]
NL(k1, k2, k3) ≡ −

N
(3)
i Γ

(3,1)
ik Γ

(3,1)
mk

2N
(3)
l N

(3)
n Γ

(3,1)
lq Γ

(3,1)
nq

dφ
(3)
m

dN
(6.24)

so that superscript [α] labels the contribution from the term involving α.

As we noted in Section 2.2.6 for the near-equilateral configuration, the term coming

from α can only be of order slow-roll [43], and so if the reduced bispectrum of ζ is to

be sufficiently large to be observable by present or next generation experiments, it will

be dominated by the second line of Eq. (2.66) [44].

For our highly squeezed case it’s not immediately clear whether the contribution of

f
[α]
NL(k1, k2, k3) must be of order ε. One might think that because at least one component

of the vector Ni is of order ε−1/2, and because as many Γ matrices appear in the

numerator as in the denominator, that the likely order is indeed ε. However, while this

is likely the most common outcome, because Γ
(3,1)
ij is a matrix and appears with different

contractions in the numerator compared with the demoninator, it is not impossible

that the contractions may conspire to make f
[α]
NL(k1, k2, k3) larger than O(ε). In this

chapter we do not perform a general study, but armed with this explicit expression for

f
[α]
NL(k1, k2, k3) we can consider the amplitude of this term on a case by case basis.

Finally, for completeness, we note that in addition to purely scalar correlations, it

is possible to calculate the three-point functions involving both the scalar curvature

perturbation and gravitons in the squeezed limit. In Appendix B.3 we use similar

techniques to those employed above to find the scalar-graviton three-point functions

for multiple field models, noting that the graviton-only three-point function will be the

same as for the single field case, as given in [36].
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6.3 Scale dependence

6.3.1 Spectral index of the halo bias

An important quantity for large scale structure surveys is the scale-dependent halo

bias, δb(k1) [291]. In Chapter 2 we introduced the concept of halo bias in Eq. (2.77).

At lowest order it linearly relates the dark matter density contrast δ = δρ/ρ, to the

halo/galaxy density contrast δg, on large scales via a local halo bias factor b(z)

δ(z, ~x) = b(z)δg(z, ~x). (6.25)

We don’t observe the dark matter directly but only the correlations of the halo density

tracers. Corrections to the bias come from higher order correlations of the underlying

dark matter density, and give a non-linear relation. The leading correction induces a

scale-dependent shift in the bias, b(z) 7→ b(z) + δb(z, k), and we refer to δb(z, k) as the

scale-dependent halo bias.

The scale-dependent halo bias is sensitive to how the ratio of the bispectrum to the

power spectrum, Bζ(k1, k2, k3)/Pζ(k1), scales with the squeezed momentum k1, where

k1 � k2 ≈ k3. This is captured by the spectral index of the halo bias, nδb ≡ nsq−(ns−1),

where nsq is the tilt of the squeezed limit of the bispectrum with respect to its squeezed

momentum k1:

lim
k1�k2,k3

Bζ(k1, k2, k3) ∼
Bζ
k3

1k
3
3

(
k1

ks

)nsq

(6.26)

with ks some arbitrary scale and Bζ roughly constant. Dias et al. [293] investigated nδb

in multiple field inflation in the case where | log(k1/k3)| is of order a few, as discussed

further in Appendix B.5. Here we would like to explore the highly squeezed case, and

find if there are significant differences.

Our results of §6.2 for the bispectrum in the highly squeezed limit can be applied to

calculate nδb for large values of | log(k1/k3)|. Differentiating log(k3
1Bζ) in (7.49) with

respect to log k1 we find

nsq = −

[
N

(3)
i N

(3)
q (N

(3)
q V

(3)
,j + 6N

(3)
qj H

(3)2
)
]

[
N

(3)
m N

(3)
r (N

(3)
r V

(3)
,n + 6N

(3)
rn H(3)2

)
]
[
2ε(1)L

(3,1)
ij − P (3,1)

ij,1

]
L

(3,1)
mn

(6.27)

where we have defined

L
(3,1)
ij ≡ Γ

(3,1)
im Γ

(3,1)
jm (6.28)

P
(3,1)
ij,1 ≡

dL
(3,1)
ij

d log k1
= −

V
(1)
,l

V (1)

(
Γ

(3,1)
ik,l Γ

(3,1)
jk + Γ

(3,1)
ik Γ

(3,1)
jk,l

)
(6.29)
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Γ
(3,1)
ik,l ≡

∂

∂φ
(1)
l

Γ
(3,1)
ik (6.30)

and we have used the slow-roll equations to relate φ̇i to V,i in (6.29).

The spectral index of the halo bias requires also the tilt of the power spectrum at

k1

ns − 1 =
d log(k3

1Pζ(k1))

d log k1
= −2

N
(3)
i N

(3)
j Γ

(3,1)
ik Γ

(3,1)
jl M

(1)
kl

N
(3)
m N

(3)
n L

(3,1)
mp

(6.31)

where

M
(1)
ij ≡ ε

(1)δij + u
(1)
ij (6.32)

and u
(1)
ij ≡

V
(1)
,i V

(1)
,j

V (1)2 −
V

(1)
,ij

V (1)
. (6.33)

This leads to the expression for the spectral index of the halo bias

nδb =−

[
N

(3)
i N

(3)
q (N

(3)
q V

(3)
,j + 6N

(3)
qj H

(3)2
)
]

[
N

(3)
m N

(3)
r (N

(3)
r V

(3)
,n + 6N

(3)
rn H(3)2

)
]
[
2ε(1)L

(3,1)
ij − P (3,1)

ij,1

]
L

(3,1)
mn

+ 2
N

(3)
i N

(3)
j Γ

(3,1)
ik Γ

(3,1)
jl M

(1)
kl

N
(3)
m N

(3)
n L

(3,1)
mn

(6.34)

valid for large values of | log(k1/k3)|, and is another key result of this chapter. In

Appendix B.5 we show that when we take our exit times to be roughly equal (6.34)

reduces to the same form of (17) of [293], given in the appendix as (B.19), and in §6.4.3

we compare approaches for a concrete model.

We note that if f
[α]
NL(k1, k2, k3) is negligible, then our expression simplifies to

nδb = −
N

(3)
i N

(3)
q N

(3)
qj

N
(3)
m N

(3)
r N

(3)
rn

(
2ε(1)L

(3,1)
ij − P (3,1)

ij,1

)
L

(3,1)
mn

+ 2
N

(3)
i N

(3)
j Γ

(3,1)
ik Γ

(3,1)
jl M

(1)
kl

N
(3)
m N

(3)
n L

(3,1)
mp

. (6.35)

6.3.2 Tilts of the reduced bispectrum in the squeezed limit

In a similar manner to Refs. [45, 303–305], one can study the scaling of the squeezed

limit of the reduced bispectrum (6.22) with respect to k1 and k3. In the squeezed

limit k2 ≈ k3, so one can parametrize how this depends on scale by differentiating with

respect to k1 or k3 leading to the tilts

nXfNL
≡ ∂ log |fNL(k1, k2, k3)|

∂ logX
(6.36)
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where X = k1 or k3, with the other momenta held fixed in the derivative. Note

that nk1fNL
= nδb since the k1 dependence of fNL is captured by the scaling of the

ratio Bζ(k1, k2, k3)/Pζ(k1) with k1. We calculate nk3fNL
in (B.30) of Appendix B.6. We

note that each of these results are different to the scale dependence of the equilateral

configuration of Byrnes et al. [45] given in Eq. (2.71), since we are working only in the

squeezed limit. These authors also considered the scale dependence of near-equilateral

triangles, writing the wavenumbers as ka = αak̃, and varying with respect to k̃, keeping

the αa constant. Their near-equilateral result has the same form as (2.71), with all ∗’s
replaced by the exit time of a pivot scale kp not too different from the k’s. Their

calculation relies on an expansion to first order in | log(k1/k3)| and as a result is only

valid for a small squeezing. We calculate the k̃ tilt using our approach in Eq (B.35)

of Appendix B.6, where more details on the expansion of [45] can also be found. We

emphasise again that all of our expressions can be employed for a large hierarchy of

scales.

6.4 Employing the Γ formalism in concrete models

In this chapter we have advocated the use of the Γ matrices to allow the bispectrum

of ζ to be calculated in the highly squeezed limit for multiple field models. These

matrices allow us to account for the evolution of the inflationary fields between horizon

crossing times, and help provide compact expressions for the bispectrum and its scale

dependence, including the contribution from the field-space three-point function. To

be of use, however, we must be able to calculate the Γ matrices in concrete settings.

In any given model, we could solve for Γ
(3,1)
ij numerically. Either by solving the

equation of motion it satisfies [38] from the initial conditions at t1 of Γ
(3,1)
ij = δij , which

follow from its definition, or by solving the background equations and implying finite

differences as was done for the derivatives of N in, for example, Refs. [38, 306, 307].

However, what makes this parametrisation particularly useful is that in any model for

which the derivatives of N can be calculated analytically, the Γ matrices also admit

analytic solutions. This allows us to compute the amplitude of the highly squeezed

limit of the bispectrum in such models and to compare this against previous squeezed

limit expressions, as well as against the amplitude of the bispectrum for near-equilateral

triangles.

We therefore calculate Γ analytically in §6.4.1 for sum-separable potentials. Then

we consider the importance of Γ in specific settings. In §6.4.2 we show that in all

single-source models, where only one field (which need not be the inflaton) contributes

towards the curvature perturbation, the effect of the Γ matrices is to cause the reduced

bispectrum in the squeezed limit to become independent of the squeezed momentum k1,

and that because the bispectrum scales with k1 in exactly the same way as the power
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spectrum, the spectral index of the halo bias will be zero, and so not observable. Then

in §6.4.3 we consider a specific multiple-source model where more interesting results

are possible. In particular, we examine a mixed curvaton-inflaton model [15, 240, 308–

314] allowing for self-interaction terms for the curvaton. For this specific model with

our given parameter choices, we find that in highly squeezed cases relevant for future

observations, the bispectrum is suppressed by the Γ matrices at a level of 20% when

compared to using the existing expressions of Byrnes et al. [45] and Dias et al. [293] for

this model. In addition, we find that the spectral index of the halo bias is enhanced

at a level of 20% in this model compared with the results that would be obtained with

previous expressions which assume a mild hierarchy of scales.

6.4.1 Calculating Γ: sum-separable potential

In the δN framework, all models which are analytically tractable have a common fea-

ture. This is that the inflationary potentials are of separable form, either sum or

product separable [306,315,316], or of the generalised sum-separable form of Ref [317].

This is true not only for models in which the evolution is tracked during inflation, but

also for models in which the post inflationary evolution is important such as the cur-

vaton model. In this work we will focus on sum-separable potentials and confirm that

we can derive analytic formulae for the Γ matrices, using similar techniques as those

originally used for derivatives of N in Ref. [306].

We will initially work with the simple case of a two field model: φ, χ and write the

potential as W (φ, χ) = U(φ) + V (χ). The slow-roll equations are then

3Hφ̇ = −U,φ , 3Hχ̇ = −V,χ , 3H2 = W. (6.37)

Using these slow-roll equations we have

dφ

dχ
=
φ̇

χ̇
=
U,φ
V,χ

. (6.38)

The number of e-folds between a flat hypersurface at time t1 and another flat hyper-

surface at time t3 is

∆N ≡
∫ t3

t1

Hdt =

∫ φ(3)

φ(1)

H

φ̇
dφ = −

∫ φ(3)

φ(1)

W

U,φ
dφ (6.39)

and using (6.38) this gives

∆N = −
∫ φ(3)

φ(1)

U

U,φ
dφ−

∫ χ(3)

χ(1)

V

V,χ
dχ. (6.40)
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We also have, by (6.38), that

∫ φ(3)

φ(1)

1

U,φ
dφ =

∫ χ(3)

χ(1)

1

V,χ
dχ. (6.41)

To determine Γ
(3,1)
ij we need to find the following four derivatives of flat hypersurface

fields

Γ
(3,1)
ij =

 ∂φ(3)

∂φ(1)
∂φ(3)

∂χ(1)

∂χ(3)

∂φ(1)
∂χ(3)

∂χ(1)

 . (6.42)

For flat hypersurfaces, by definition, if we vary our position on the initial slice, then

∆N does not alter. This implies that the derivative of ∆N with respect to field values

on the initial flat hypersurface satisfies: ∆N,φ(1) = 0 = ∆N,χ(1) . Employing (6.40) then

leads to two independent equations relating the derivatives. Moreover, differentiating

(6.41) with respect to the field values on the initial flat hypersurface yields two further

independent equations relating the derivatives. Between these four equations we can

then solve for each derivative and hence determine Γ
(3,1)
ij .

We begin with ∆N,φ(1) = 0 and ∆N,χ(1) = 0 giving respectively

−U
(3)

U
(3)
,φ

∂φ(3)

∂φ(1)
− V (3)

V
(3)
,χ

∂χ(3)

∂φ(1)
= −U

(1)

U
(1)
,φ

(6.43)

−U
(3)

U
(3)
,φ

∂φ(3)

∂χ(1)
− V (3)

V
(3)
,χ

∂χ(3)

∂χ(1)
= −V

(1)

V
(1)
,χ

. (6.44)

Next differentiating (6.41) with respect to φ(1) and χ(1) gives respectively

1

U
(3)
,φ

∂φ(3)

∂φ(1)
− 1

V
(3)
,χ

∂χ(3)

∂φ(1)
=

1

U
(1)
,φ

(6.45)

1

U
(3)
,φ

∂φ(3)

∂χ(1)
− 1

V
(3)
,χ

∂χ(3)

∂χ(1)
= − 1

V
(1)
,χ

. (6.46)

Solving, we find

Γ
(3,1)
ij =

 ∂φ(3)

∂φ(1)
∂φ(3)

∂χ(1)

∂χ(3)

∂φ(1)
∂χ(3)

∂χ(1)

 =


U

(3)
,φ

U
(1)
,φ

(U(1)+V (3))

W (3)

U
(3)
,φ

V
(1)
,χ

(V (1)−V (3))

W (3)

V
(3)
,χ

U
(1)
,φ

(U(1)−U(3))

W (3)

V
(3)
,χ

V
(1)
,χ

(V (1)+U(3))

W (3)

 , (6.47)

which is the analytic calculation of Γ for two-field sum-separable potentials we required.

Note that i labels the rows and j labels the columns.

For a model with n fields one can calculate the Γ matrix by generalizing the two-field
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case. In what follows we will suspend the summation convention of repeated indices,

and where a sum should be taken we explicitly state this. We take the sum-separable

potential W (φ1, φ2, ..., φn) =
∑

lWl(φl). We have, in analogy with (6.40),

∆N = −
∑
l

∫ φ
(3)
l

φ
(1)
l

Wl

W ′l
dφl (6.48)

where W ′l ≡ ∂Wl/∂φl for which we can write the equations ∆N
,φ

(1)
j

= 0 in analogy to

(6.43) and (6.44). We also have the relations, in analogy to (6.41), for all l, i

∫ φ
(3)
l

φ
(1)
l

dφl
W,φl

=

∫ φ
(3)
i

φ
(1)
i

dφi
Wi,φi

(6.49)

for which we can take derivatives with respect to φ
(1)
j giving equations analogous to

(6.45) and (6.46). Combining these equations with those from ∆N
,φ

(1)
j

= 0, after some

algebra we arrive at

Γ
(3,1)
ij =

∂φ
(3)
i

∂φ
(1)
j

=
W
′(3)
i

W
′(1)
j

(W
(1)
j −W (3)

j )

W (3)
+ δij

W
′(3)
i

W
′(1)
i

(6.50)

which reduces to (6.47) in the two-field case.

6.4.2 Single-source models

In what follows we will assume for now that in the highly squeezed limit we can neglect

B
[α]
ζ (k1, k2, k3), the contribution to the bispectrum from intrinsic field-space three-point

function. This needs to be checked on a case by case basis.

In the single-source case where only one field, which we denote χ, contributes to ζ,

the bispectrum (7.49) (without B
[α]
ζ (k1, k2, k3)) simplifies to

lim
k1�k2,k3

Bζ(k1, k2, k3) ≈2N (3)
χ N (3)

χχN
(3)
χ Γ(3,1)

χm Γ(3,1)
χm

H(1)2

2k3
1

H(3)2

2k3
3

. (6.51)

Now we can use (7.43) to relate N
(3)
χ to N

(1)
i through the Γ’s to give the bispectrum

and reduced bispectrum as

lim
k1�k2,k3

Bζ(k1, k2, k3) ≈ 2N (1)
m N (3)

χχN
(1)
m

H(1)2

2k3
1

H(3)2

2k3
3

(6.52)

≈ 2Pζ(k1)Pζ(k3)
N

(3)
χχ

N
(3)
χ

2 (6.53)
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lim
k1�k2,k3

6

5
fNL(k1, k2, k3) ≈ N

(3)
χχ

N
(3)
χ

2 . (6.54)

We note that the effect of the Γ matrices has been to make the bispectrum proportional

to 2Pζ(k1)Pζ(k3), so that the reduced bispectrum is independent of k1, and coinciden-

tally of the same form as would be derived in the near-equilateral regime assuming

t∗ ≈ t3. Because the bispectrum scales with k1 in exactly the same way as the power

spectrum, the spectral index of the halo bias will be zero, and so will not be observable

unless the intrinsic contribution we have neglected is important.

Note that the results of this subsection did not rely on assuming a sum-separable

potential – all single source models satisfy (6.54). In the next subsection we will look at

a specific multiple-source model which does rely on the assumption of a sum-separable

potential.

6.4.3 Multiple-source models: the mixed curvaton-inflaton model

We now consider multiple-source models, and will consider the concrete example of a

curvaton model for which both the inflaton, φ, and curvaton, χ, contribute towards ζ.

In order to make analytic progress we will need expressions for the derivatives of N

in this multiple-source model to combine with our analytic expression for Γ, valid for

sum-separable potentials.

More detailed studies of the curvaton scenario can be found in the literature, see

e.g. [15, 308–312]. Here we just give a very brief account outlining our parameter

choices and quote the results for the N derivatives. Our main focus will instead be

on the differences between our new expressions compared to existing formulae in the

literature. We will show these diffences graphically, where the plots are produced using

the expressions for the N derivatives that follow, together with the Γ matrix for sum-

separable potentials.

For the inflaton and curvaton, we take the potential

W (φ, χ) =
1

2
m2
φφ

2 +
1

2
m2
χχ

2 + λχn, (6.55)

where the curvaton is given a self-interaction with coupling λ, and n > 2. If we are

to see a difference between the bispectrum in the highly squeezed limit and the near-

equilateral limit, it is natural to expect that we will need the field configuration to differ

significantly between different exit times, otherwise the δφi would not evolve between t1

and t3 and we would just get Γ
(3,1)
ij = δij . This means that we expect to see interesting

effects for models which generate a significantly scale-dependent non-Gaussianity. In

the present model, this means that the curvaton field, while light, cannot be completely

frozen. To achieve this we take the mass of the curvaton and inflaton to be the same
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mχ = mφ.

The self-interacting curvaton model can give significant scale dependence of fNL,

[240,318], and analytic expressions for the derivatives of N are available in the limit of

weak self-interaction sk ≡ 2λχn−2
k /m2

χ � 1 [240]. Here, and in what follows, a subscript

k indicates the result is a function of the value of the curvaton and/or inflaton fields

at the time, tk, when a given k-mode exits.

The relevant N derivatives are given by [41,240,294]

Nφ =
1√

2εφ|k
(6.56)

Nχ =
2rdec

3

σ′osc

σosc

∣∣∣
k

(6.57)

Nχχ =
rdec

3

[
σ′′osc

σosc
+

(
σ′osc

σosc

)2
] ∣∣∣

k
(6.58)

where σosc(χk) ∝ χk
(

1 +
n

2
sk

)−1/(n−2)
. (6.59)

The parameter rdec denotes the value of 3ρχ/(3ρχ+4ργ) at the time of curvaton decay,

where ρ is the energy density and the subscript labels the species, with γ denoting

radiation. In the example which follows we take to be rdec = 0.02. We have neglected

Nφφ, Nφχ which are much smaller than Nχχ for the parameter choices considered.

We take the initial condition25 φ0 = 16 which leads to 63.5 e-folds of inflation and

assume that all scales which exit the horizon after this time are within the horizon today

and potentially observable. We will also take χ0 = 2 × 10−3 to generate a significant

non-Gaussianity. To see a significantly scale-dependent non-Gaussianity we take the

self-interaction with n = 6 and λ = 0.2, which gives sk ≈ 0.07.

The power spectrum for this model is shown in Figure 9a, and the tilt of the power

spectrum is shown in Figure 9b. In order to see a large scale dependence of fNL for

this simple model, we took the curvaton mass to be as large as the inflaton mass26.

However this has the adverse effect of making the tilt of the power spectrum to not

be as red (negative) as observations suggest. This could be fixed by beginning with a

more complicated model, and not requiring the curvaton mass to be as large, but this

is not our focus here, and instead we focus on the results for the bispectrum.

We can now compare our new expressions with Γ’s against existing expressions in

the literature. In the 3d plots, the near-equilateral limit log(k1/k3) ≈ 0 is on the far

right of each plot, and the squeezing increases as you move away from this corner. The

highly squeezed limit, where log(k1/k3) ∼ −20 is on the far left of each plot.

25Note we are still working in units where the reduced Planck mass is set to one.
26 A potential issue for the mixed curvaton-inflaton model with equal masses is that since both fields

begin oscillating at exactly the same time, the curvaton energy density remains subdominant for a long
time – see [319] for a discussion on this.
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(a) Power spectrum (b) Tilt of the power spectrum

(c) Bispectrum β = 4k31k
3
3Bζ in (7.49)

(d) β[α] = 4k31k
3
3B

[α]
ζ from first line of

(7.49)

(e) Reduced bispectrum fNL, (5.4) (f) Spectral index of the halo bias, (6.35)

Figure 9: In the 3d plots, the blue surfaces are our expressions with Γ’s. Red surfaces
are Byrnes et al. [45] expressions. Yellow surfaces are the Dias et al. [293] expressions.
The near-equilateral regime is on the far right of each plot. The highly squeezed limit is
on the far left of each plot. The green surface shows the [α] contribution is negligible for
this model.

In Figure 9c we plot the bispectrum β ≡ 4k3
1k

3
3Bζ to show how the bispectrum

scales with log(k1/k0) and log(k3/k0) where k0 = H(0) at the initial time t0, where we

have set a0 = 1. The blue surface uses our new expression (7.49), the red surface uses

(96) of Byrnes et al. [45] given in (B.13), and the yellow surface uses (14) of Dias et

al. [293], given in (B.18). In the highly squeezed limit we see a percentage difference

of about 20%. The near-equilateral results are within a few percent of each other for
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each of the three expressions – the small difference is because previous authors have

included an additional constant term which appears at next order in slow-roll in their

expression for Σ at horizon crossing discussed in Footnote 2 and Appendix B.4.

In Figure 9d we plot the contribution to the bispectrum from the field-space three-

point function β[α] = 4k3
1k

3
3B

[α]
ζ where B

[α]
ζ is the first line of (7.49). We see that this

is a factor of 103 smaller than the total bispectrum for all scales considered, and so all

the [α] terms in observables can be neglected for this model.

In Figure 9e we plot the reduced bispectrum, where the blue surface is our new

expression (6.22) and the red surface is (96) of [45] divided by the factor 2Pζ(k1)Pζ(k3),

i.e. the curly brackets of (B.13). Dias et al. don’t give an explicit expression for the

reduced bispectrum, so we don’t plot this here. Again, in the highly squeezed limit we

see a percentage difference of about 20%, and close agreement in the near-equilateral

configuration.

Finally, in Figure 9f we plot the spectral index of the halo bias. Blue is our new

expression (6.35), and the yellow surface is (17) of [293], given in (B.19). Byrnes et

al. [45] don’t give an expression for the spectral index of the halo bias so we don’t plot

this here. Similarly to the other observables we see a percentage difference of about

20% in the highly squeezed limit. We see agreement to within a few percent in the

near-equilateral limit, the small discrepancy being due to the Dias et al. expression

being evaluated at the exit time of kt ≡ k1 + k2 + k3 compared to ours being evaluated

at t3.

The 20% level difference for all these observables for a squeezing of | log(k1/k3)| ∼
O(20) can be estimated heuristically as arising from a scale-dependence of the reduced

bispectrum of O(0.01), multiplied by the squeezing. We thus expect similar levels of

discrepancy for any model where the scale-dependence of the reduced bispectrum is

of similar order to the scale-dependence of the power spectrum, when considering a

squeezing of | log(k1/k3)| ∼ O(20), and that the percentage difference will scale linearly

with the scale-dependence of the bispectrum.

The expected levels of squeezing for three future experiments were shown in Table 5

of the introduction. The results of this section show that inclusion of the effects of field

evolution can be important when computing the theoretical predictions of a model for

comparison against observations for large squeezing, even for this simple model.

6.5 Conclusion

In this work we calculated the squeezed limit of the bispectrum of the curvature per-

turbation for multiple field inflation. Different scales involved in one triangle of the

bispectrum will exit the horizon at different times, and previous analytic expressions

have been limited to a mild squeezing where the exit times are roughly equal. Observa-
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tions can at present probe only a mildly squeezed limit, but future large-scale structure

surveys and observations of CMB µ-distortions will be able to probe a highly squeezed

limit. It is important, therefore, to have accurate theoretical predictions for this highly

squeezed limit in order to ensure the uncertainty in the prediction is less than the un-

certainty in the data. For certain models, our results give a correction at a level of 20%

in the highly squeezed limit compared to extrapolating existing expressions, valid only

in the mildly squeezed limit, to the highly squeezed limit.

In order to study this highly squeezed limit, we suggested using the elegant Γ matrix

formalism to account for the evolution on superhorizon scales of the perturbations

between exit times. We also calculated the intrinsic three-point function of the field

perturbations, α, in the highly squeezed limit for the first time. We did so by appealing

to a soft limit argument, previously used in the single field context for the curvature

perturbation. Together these elements allowed us to extend δN expressions for the

bispectrum of ζ to account for multiple crossing times. From this expression, we then

obtained the reduced bispectrum and the spectral index of the halo bias. Working with

a specific model, the mixed inflaton-curvaton scenario with a self-interacting curvaton,

we checked the difference in our theoretical prediction, valid for a large squeezing,

against existing predictions, valid for a mild squeezing. As would be expected we found

significant differences, especially in the highly squeezed limit for the cases in which

there is significant scale dependence in the reduced bispectrum.

The overall aim of this chapter was to provide clarity in how to confront models of

inflation against observations sensitive to the squeezed limit of the bispectrum. Our

results however, could also be useful to check numerical methods in the squeezed limit.

From a theoretical and observational point of view, soft-limits – of which the squeezed

limit is the simplest example – are of considerable interest. In the next chapter we

consider soft limits of higher n-point correlation functions for multiple field inflation,

using a similar approach. For n > 3, the story can be more interesting than for the

bispectrum, where the only soft limit is when a single external momenta becomes small.

Firstly, one can consider multiple-soft limits, where more than one momentum becomes

smaller than the others. Moreover, one can also consider the collapsed limit, when an

internal momentum becomes soft. Observing these higher-point functions may be even

harder than for the bispectrum, but it is still important to have theoretical predictions

for multiple field inflation to constrain models using observational limits, in particular

to search for deviations from single field inflation.

Finally, we mention that the intrinsic term in the bispectrum coming from α was

negligible compared to the other term in the case study presented. Calculating this

expression explicitly allowed us to determine this, but more work is required to in-

vestigate whether this term can ever be as large as, or even dominate over, the other

contribution.
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Chapter 7

The Separate Universe Approach

to Soft Limits

This chapter is based on the work [4], The Separate Universe Approach to Soft Limits,

undertaken with my supervisor, David Mulryne.

In this chapter we develop a formalism for calculating soft limits of n-point infla-

tionary correlation functions using separate universe techniques. Our method naturally

allows for multiple fields and leads to an elegant diagrammatic approach. As an ap-

plication we focus on the trispectrum produced by inflation with multiple light fields,

giving explicit formulae for all possible single- and double-soft limits. We also inves-

tigate consistency relations and present an infinite tower of inequalities between soft

correlation functions which generalise the Suyama-Yamaguchi inequality.

7.1 Introduction

Observational cosmology constrains the correlations of primordial perturbations that we

believe were produced during inflation. Soft limits of cosmological correlation functions

occur when there is a large hierarchy between scales involved in the correlation (here

soft means a longer wavelength perturbation) and are interesting both observationally

and theoretically. From the observational point of view, future experiments will be able

to probe a much larger range of scales than is currently available [291,292]. We therefore

need to be able to calculate correlations between perturbations on very different scales

in order to compare theories against these observations. On the theoretical side, soft

limits represent an important simplification to the calculation of correlation functions,

leading to elegant analytic expressions and to consistency relations which apply for

broad classes of models.

Soft limits come in two types: squeezed - where an external wavevector becomes

soft, or collapsed where an internal wavevector (i.e. a sum of external wavevectors)
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becomes soft.

In Maldacena’s seminal work [36] he found that the squeezed limit of the bispectrum

in single-field slow-roll inflation was determined by the tilt of the power spectrum, pro-

viding a consistency relation between these observables. The result was found to hold

more generally for all single-field models with a Bunch-Davies initial state and where

the classical solution is an attractor [83, 84]. More general single-field soft limits have

subsequently been studied, providing further consistency relations amongst correlation

functions [30, 61, 255–267, 270–279, 320]. Multiple-soft limits (involving more than one

soft mode) were considered for single-field inflation in [268,269].

Soft limits have also been shown to be sensitive to additional fields present during

inflation [280–287]. In our earlier work [3], presented in Chapter 6, we considered the

case of inflation driven by multiple light fields. Employing separate universe techniques

[39, 40] including the δN expansion [22, 37], we gave explicit analytic expressions for

the squeezed limit of the bispectrum in multi-field inflation for the first time. We

found that our expression for the reduced bispectrum in a squeezed configuration can

be significantly different to the standard expression for the reduced bispectrum in a

close to equilateral configuration [41] (contrast Eq. (7.51) with Eq. (7.52)). Shortly

thereafter, Byrnes et al. [321,322] applied a similar approach to study the hemispherical

asymmetry (see e.g. [2, 240, 288–290]) and its relation to the squeezed bispectrum and

collapsed limit of the trispectrum.

In this chapter our aim is to extend our earlier results and to investigate general

soft limits in multi-field inflation utilising expansions similar to the δN expansion.

In particular, we show how to produce soft limit diagrams with associated rules

that lead to compact expressions for soft limits of the correlation functions of ζ. Our

approach can be applied very generally to multiple-soft limits of squeezed (external)

and collapsed (internal) momenta of arbitrary n-point cosmological correlation func-

tions for models of inflation with any number of fields. In this sense, this chapter can be

viewed as an extension to the multiple-soft limit results of [268, 269]. As applications,

we apply our approach to explore all the single- and multiple-soft limits of the trispec-

trum, and to derive an infinite tower of inequalities between soft limits of correlation

functions, generalizing the Suyama-Yamaguchi inequality [280, 286, 287, 323] to higher

point correlation functions.

The compact expressions obtained from using the Soft Limit Expansion Eq. (7.10)

provide analytic insight, but are not easy to evaluate explicitly. This is because the

coefficients they contain can only easily be calculated in certain circumstances, such

as for inflation with multiple light scalar fields. Moreover, they contain field-space

correlations of soft perturbations evaluated at a later time than the horizon exit time of

the soft perturbations. On the other hand the objects which are more easily calculated
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are these correlations evaluated at the horizon exit time27. We therefore introduce one

further separate universe expansion – the Γ expansion [55–57, 298, 299] – which allows

these later correlations to be calculated in terms of the horizon crossing correlations,

and then present explicit expressions for the soft limits of inflation with multiple light

scalar fields.

At present, observations can only probe a mildly soft limit, but future large scale

structure surveys, and more distant future spectral distortion experiments may probe

a larger range of scales. Even for the bispectrum, the squeezed limit is not well con-

strained by current experiments, and higher-order soft limits of higher-point function

also remain out of reach of current experiments. However, in principle, there may be

a large signal in a double-soft limit of a certain higher-point function which future

experiments may be sensitive to, even if the squeezed limit of the bispectrum remains

rather unconstrained.

The results of this paper only hold to lowest order in the gradient expansion - if

the hierarchy of the scales involved is not large enough then contributions from higher

order gradient terms will become important.

This chapter is laid out as follows. In §7.2 we consider soft limits. We introduce a

new Soft Limit Expansion in §7.2.1, which is a form of background wave method used

by other authors. As a simple example we calculate formal expressions for the squeezed

bispectrum and collapsed trispectrum in §7.2.2, showing how the Suyama-Yamaguchi

inequality arises in our approach. In §7.2.3 we introduce the soft limit diagrams. We

then use them to quickly calculate all other soft limits of the trispectrum in §7.2.4, and

to find an infinite tower of inequalities in §7.2.5 which generalise the Suyama-Yamaguchi

inequality to higher-point correlation functions. In §7.3 we give more explicit expres-

sions. We introduce the Γ expansion in §7.3.1 applying it to correlation functions in

§7.3.2 and provide explicit examples for multiple light fields in §7.3.3. We conclude

in §7.4. In Appendix C.1 we give more details on the background wave method. In

Appendix C.2 we show how our multi-field double-soft limit reduces to the consistency

relation of the single field case. In Appendix C.3 we present a diagrammatic approach

for the Γ expansion.

A few notational comments are in order for this chapter. We use the upper case

Roman indices, A,B, ..., to denote multiple-light scalar fields allowing for this to be

extened to include other degrees of freedom too. These extra degrees of freedom may

include field velocities if these were important or vector or tensorial perturbations for

example. At a formal level these extensions are always possible, though the explicit

calculation of the coefficients (the derivatives of N) becomes less clear. Going beyond a

27These are far from trivial to calculate, but the statistics are expected to be close to Gaussian
for canonical models with light fields, and known expressions exist for the two-point [20, 21], three-
point [324,325] and four point correlation functions [243,264] in many circumstances.
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separate universe approximation we could even include the sensitivity of ζ at the later

time to gradient terms at the earlier time – moving therefore to a gradient expansion

[25, 326, 327]. To keep the notation clean throughout this chapter, and because our

primary concern is models with multiple light fields, we will indicate a summation over

only field space indices using upper case Roman indices, A,B, .... We will always bear

in mind, however, that this set of variables can be formally extended to all relevant

degrees of freedom, and so the results, such as our consistency relations, are rather

general.

7.1.1 Correlations of the Curvature Perturbation

The objects of primary interest for observations are the n−point correlation functions

of ζ evaluated at some late time relevant to observations tf . We introduce arbitrary

external momenta, k1,k2, ...,kn which we will order, without loss of generality, by

their magnitudes k1 ≤ k2 ≤ ... ≤ kn, where k = |k|. These scales exit the horizon,

k = aH(t), at times t1, t2, ..., tn respectively, where t1 ≤ t2 ≤ ... ≤ tn. From now on if

we drop the time superscript on any object other than ζ, it is to be understood that

the evaluation time should be the exit time of the hardest mode, (shortest wavelength),

tn, for example N ≡ N (n) and δφA ≡ δφ
(n)
A . This avoids unnecessary clutter of our

expressions.

We introduce notation for n−point ζ correlation functions such that

〈ζ(k1) · · · ζ(kn)〉 = Gn(k1, ...,kn)(2π)3δ(k1 + · · ·+ kn) (7.1)

so that, for example, G2, G3 and G4 represent the power spectrum, bispectrum and

trispectrum respectively

G2(k1,−k1) = Pζ(k1) (7.2)

G3(k1,k2,k3) = Bζ(k1, k2, k3) (7.3)

G4(k1,k2,k3,k4) = Tζ(k1,k2,k3,k4). (7.4)

And in a similar manner for n−point field space correlation functions we have

〈δφA1(k1) · · · δφAp(kp)〉 = FA1···Ap(k1, ...,kp)(2π)3δ(k1 + · · ·+ kp) . (7.5)

For the two, three and four point we also employ the conventional symbols

FAB(k1,−k1) = ΣAB(k1) (7.6)

FABC(k1,k2,k3) = αABC(k1, k2, k3) (7.7)

FABCD(k1,k2,k3,k4) = TABCD(k1,k2,k3,k4). (7.8)
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The δN expansion then allows us to write the ζ correlators in terms of the δφA

correlators. The result for the power spectrum of ζ was first given in [37], the bispec-

trum in [41] and the trispectrum in [242, 243, 264, 328]. Higher point ζ correlators are

related to field-space correlators and can be nicely calculated using the diagrammatic

presentation of [329].

7.2 Soft Limits

7.2.1 Soft Limit Expansion

Soft limits occur when there is a hierarchical separation of scales involved in a correla-

tion. For any real-space perturbation, Y , (for example, Y can stand for ζ or for δφA) we

can consider two contributions to this perturbation. One contains only Fourier modes

clustered around some hard mode 1/kh (subscript h for hard), and the other contains

only long modes around some arbitrary soft mode, 1/ks (subscript s for soft), leading

to

Y (x) ⊂ Y h(x) + Y s(x)

Y h(x) =

∫ kh+∆kh

kh−∆kh

d3k

(2π)3
eik.xYk

Y s(x) =

∫ ks+∆ks

ks−∆ks

d3k

(2π)3
eik.xYk

(7.9)

where the ranges ∆kh and ∆ks are arbitrary, but small. This means that the Fourier

components of Y h only have support on [kh−∆kh, kh +∆kh] and similarly for Y s whose

Fourier components only have support on [ks −∆ks, ks + ∆ks].

For soft limits it can be argued that the dominant contribution to correlations

between hard and soft modes comes from how the soft modes, which exit the horizon at

much earlier times, correlate with the shifts that the soft modes cause in the background

cosmology felt by the hard modes. This is a form of the background wave assumption,

which is discussed at length in Appexdix C.1. It can be used for any set of scales,

but becomes accurate only when the hierarchy is large. In this work we implement

this assumption by Taylor expanding the value the hard contribution to ζ takes in the

background of the soft contribution to the scalar fields, which we denote ζh(x)
∣∣
s
, about

the value it would have taken in the absence of soft scalar field modes, denoted ζh. The

expansion then, in Fourier space for some hard wavevector k, is

ζh
k

∣∣∣
s

= ζh
k +

[
ζh
,A ? δφ

s
A

]
k

+
1

2

[
∂2ζh

∂φA∂φB
? δφs

A ? δφ
s
B

]
k

+ . . . (7.10)

(see Appexdix C.1 for a fuller discussion). We call Eq. (7.10) the Soft Limit Expansion.

139



CHAPTER 7. THE SEPARATE UNIVERSE APPROACH TO SOFT LIMITS

It can be seen as a form of separate universe expansion, in which the soft modes alter

the background cosmology in which hard modes exit and subsequently evolve. The

hard modes effectively feel a different background in different spatial locations. The

derivatives in the Taylor expansion are taken with respect to the background fields,

φA(t), a consequence of the separate universe approximation. The time of evaluation

of δφs
A and ∂/∂φA is arbitrary, as long as they are the same as each other. We will

always take it to be the last exit time of the modes under consideration within a

correlation.

In writing Eq. (7.10), we have again assumed that the perturbed cosmology can be

fully defined at some given time just in terms of field fluctuations on flat hypersurfaces,

which is the case during slow roll, for example. As for the δN expression, however,

there is nothing to stop us, at least at a formal level, from extending this to include

any other degrees of freedom that may be important. The expansion Eq. (7.10) could

be generalised to include spatial gradients to get subleading soft behaviour - this would

be the analogy to the gradient expansion [25,326,327] which extends the usual δN . We

leave this for future work.

In the following sections we will consider soft limits of correlations. We will insert

the expansion Eq. (7.10) for all modes considered hard, and assume that the dominant

contributions will come from Wick contractions amongst soft modes themselves, and

Wick contractions amongst hard modes themselves, but not between soft and hard

modes. This is the mathematical version of the assumption that the main contribution

to the correlations come from how the soft modes correlate with the shifts they cause

to the background cosmology which the hard modes experience. This leads to the

factorization of the soft limits of correlations into hard sub-processes.

7.2.2 Simple Examples

Before presenting general rules which allow us to generate expressions for arbitrary soft

limits let us consider two simple examples: the squeezed limit of the bispectrum and

the single-soft collapsed limit of the trispectrum.

The Squeezed Limit of the Bispectum

As a first simple example of the use of the expansions presented above we revisit

the squeezed limit of the bispectrum, considered in our earlier work [330]. We take

〈ζk1ζk2ζk3〉, with k1 � k2 ∼ k3, and employ Eq. (7.10) to expand ζh
k2

∣∣
s

and ζh
k3

∣∣
s

in

terms of long field perturbations, and insert these into the correlator

lim
k1 soft

〈ζk1ζk2ζk3〉 ≈ 〈ζs
k1
ζh
k2

∣∣
s
ζh
k3

∣∣
s
〉 (7.11)
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≈ 〈ζs
k1

(
ζh
k2

+

[
∂ζh

∂φA
? δφs

A

]
k2

+ . . .

)(
ζh
k3

+

[
∂ζh

∂φB
? δφs

B

]
k3

+ . . .

)
〉 (7.12)

≈ (2π)3δ(k1 + k2 + k3)〈ζs
k1
δφs

B−k1
〉′ ∂
∂φB

(
1

2
Pζ(k2) +

1

2
Pζ(k3)

)
(7.13)

where the primed correlator denotes the correlator stripped of the delta function and

the factor of (2π)3. In the first line we make the soft limit assumption that the dominant

contribution in the soft limit comes from the correlation between the soft modes and

the change that the soft modes cause in the hard modes. This allows us to replace ζk1

with ζs
k1

, and to replace ζk2 with ζh
k2

∣∣
s

within the correlator (and similarly for ζk3). In

the final line we use Wick’s theorem and the soft limit assumption that only soft modes

correlate with soft modes, and only hard modes correlate with hard modes.

Now, in the soft limit to leading order k2 ≈ k3, we have that the final line simplifies

to

lim
k1 soft

〈ζk1ζk2ζk3〉 ≈ (2π)3δ(k1 + k2 + k3)NAΣAB(k1)Pζ,B(k3) (7.14)

where we also used the first order δN expansion Eq. (2.60) for the soft ζ, and the

notation Y,B ≡ ∂Y
∂φB

, for any function Y , together with Eq. (7.6) for the definition of

ΣAB(k1).

The expression Eq. (7.14) is quite formal, but very compact. In §7.3 we will see

how to turn it into a more explicit expression which can be evaluated to gain model

specific predictions.

The Collapsed Limit of the Trispectum

(a) Equilateral (b) Single-Soft Squeezed (c) Single-Soft Collapsed

(d) Double-Soft Kite (e) Double-Soft Squished (f) Double-Soft Wonky

Figure 10: Possible soft shapes of the trispectrum. For illustration we have drawn
the quadrilaterals here as planar, but in general they can be three-dimensional. The
greyscale adds emphasis, with lighter grey being more soft, while darker grey is more
hard.
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The possible soft limit shapes for the trispectrum are shown in Fig. 10. As a second

example we consider the single-soft collapsed limit of the trispectrum, k12 � k1 ≈ k2 ∼
k3 ≈ k4, where k12 = k1 + k2, illustrated in Fig. 10(c). We consider the four point

function, 〈ζk1ζk2ζk3ζk4〉 with all the external ζ’s taken to be hard with respect to the

soft collapsed mode k12. We use Eq. (7.10) on each of the four ζ’s and insert these into

the correlator

lim
k12 soft

〈ζk1ζk2ζk3ζk4〉 ≈ 〈ζh
k1

∣∣
s
ζh
k2

∣∣
s
ζh
k3

∣∣
s
ζh
k4

∣∣
s
〉 (7.15)

≈ 〈
(
ζh
k1

+
[
ζh
,A ? δφ

s
A

]
k1

+ . . .

)(
ζh
k2

+
[
ζh
,B ? δφ

s
B

]
k2

+ . . .

)
×(

ζh
k3

+
[
ζh
,C ? δφ

s
C

]
k3

+ . . .

)(
ζh
k4

+
[
ζh
,D ? δφ

s
D

]
k4

+ . . .

)
〉.

(7.16)

There are lots of possible terms that can now appear when we Wick contract. In what

follows we only show the terms that contribute at leading order in the soft limit. These

are the terms that contain ΣAB(k12), which occur either when ζh
k1

gets contracted with

the ζh
,B inside the convolution

[
ζh
,B ? δφ

s
B

]
k2

, or similarly, when ζh
k2

gets contracted with

the ζh
,A inside the convolution

[
ζh
,A ? δφ

s
A

]
k1

. This is because the delta function that ac-

companies these contractions then forces the integrated momentum in the convolution,

(which is the momentum of δφs
B or δφs

A respectively) to have magnitude k12 – which

then appears in ΣAB(k12). There are four possible such terms giving the following

contribution to the correlator

lim
k12 soft

〈ζk1ζk2ζk3ζk4〉

≈
∫
p

∫
q

(
〈ζh

k1
ζh
,Ak2−p

〉+ 〈ζh
,Ak1−p

ζh
k2
〉
)
〈δφs

Apδφ
s
Bq〉

(
〈ζh

k3
ζh
,Bk4−q

〉+ 〈ζh
,Bk3−q

ζh
k4
〉
)
.

(7.17)

Now using 〈ζh
k1
ζh
,Ak2−p

〉 = (2π)3δ(k1 + k2 − p)1
2Pζ(k1),A, and similarly for the other

three two-point functions, we get

lim
k12 soft

〈ζk1ζk2ζk3ζk4〉

≈ (2π)3δ(k1 + k2 + k3 + k4)
1

2
[Pζ(k1) + Pζ(k2)],A ΣAB(k12)

1

2
[Pζ(k3) + Pζ(k4)],B .

(7.18)

Now, since in the soft limit to leading order k1 ≈ k2 and k3 ≈ k4, we can replace Pζ(k2)
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with Pζ(k1) and Pζ(k4) with Pζ(k3) to get our final expression

lim
k12 soft

〈ζk1ζk2ζk3ζk4〉

≈ (2π)3δ(k1 + k2 + k3 + k4)Pζ(k1),AΣAB(k12)Pζ(k3),B.
(7.19)

We note that, though presented in a different manner, this agrees with the calculation

of Byrnes et al. [322] for the collapsed limit.

Suyama-Yamaguchi Inequality

We can use Eq. (7.19) and Eq. (7.14) to directly prove the soft limit version of the

Suyama-Yamaguchi inequality [287] relating the single-soft collapsed limit of the trispec-

trum to the squeezed limit of the bispectrum [280,323,331]. We begin by defining the

dimensionless parameters

f̃NL(k12, k1, k2) ≡ 5

12

lim
k12 soft

Bζ(k12, k1, k2)

Pζ(k12)Pζ(k1)
=

5

12

NAΣAB(k12)Pζ(k1),B
Pζ(k12)Pζ(k1)

, (7.20)

τ̃NL(k1,k2,k3,k4) ≡ 1

4

lim
k12 soft

Tζ(k1,k2,k3,k4)

Pζ(k12)Pζ(k1)Pζ(k3)
=

1

4

Pζ ,A(k1)ΣAB(k12)Pζ ,B(k3)

Pζ(k12)Pζ(k1)Pζ(k3)
.

(7.21)

The equalities that follow the definitions use Eq. (7.14) and Eq. (7.19) respectively.

The soft version of the Suyama-Yamaguchi inequality follows in the special case

where k3 = k1. In this case the numerator of Eq. (7.21) becomes Pζ(k1),AΣAB(k12)Pζ(k1),B,

which can be viewed as the inner product, with respect to the metric ΣAB(k12), of a

vector with components Pζ(k1),A. The numerator of Eq. (7.20) is NAΣAB(k12)Pζ(k1),B

which is the inner product of a different vector, NA, with the original vector Pζ(k1),B.

The Cauchy-Schwarz inequality then gives

[Pζ(k1),AΣAB(k12)Pζ(k1),B][NCΣCD(k12)ND] ≥ [NEΣEF (k12)Pζ(k1),F ]2. (7.22)

We can now use the k3 = k1 version of Eq. (7.21) to replace the the first term in the

left hand side of Eq. (7.22) in terms of τ̃NL, and rewrite the second term using the δN

expression Pζ(k12) = NCΣCD(k12)ND . Finally using Eq. (7.20) to replace the RHS in

terms of f̃NL, we arrive at

τ̃NL ≥
(

6

5
f̃NL

)2

. (7.23)

This is a rather direct proof of this soft limit relation, which to our knowledge hasn’t

appeared before, but which recovers the results of [280, 323, 331]. In §7.2.5 we will
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see how this inequality can be generalised to provide relations between higher point

functions.

7.2.3 Soft Limit Diagrams

The examples given so far were sufficiently simple that we could easily take a direct

approach using the expansion Eq. (7.10) and then Wick contracting, using some algebra

to get simple final expressions such as Eq. (7.14) and Eq. (7.19). For soft limits of

higher-point correlation functions, however, this approach becomes cumbersome. It

proves useful to generate a set of rules which lead to compact final expressions of the

form given above. This can be readily achieved since for any soft limit the procedure

is simply to insert the Soft Limit Expansion Eq. (7.10) for every hard ζ perturbation

that is present. Wick contractions then occur amongst the soft modes themselves, and

between the hard modes themselves, but not between soft and hard modes. Soft and

hard modes are correlated only through the derivatives of the Soft Limit Expansion,

Eq. (7.10). If there are N soft momenta of the same size, we need to Taylor expand to

N -th order consistently in both the Soft Limit Expansion, Eq. (7.10), and in the δN

expansion of the soft ζ

ζs
k = NAδφ

s
Ak +

1

2
NAB [δφs

A ? δφ
s
B]k + · · · . (7.24)

We can then organise the result in terms of diagrams, which we call Soft Limit Di-

agrams. These diagrams are analogous to the δN graphs [329] which represent the

Taylor expansion of standard δN . For simplicity we focus here only on tree level28

contributions and capture only leading order behaviour in the soft limit and gradient

expansion.

We now give rules for how to calculate a correlation in which all of the soft momenta

are the same hierarchical size. It may be helpful to read these rules in combination

with the examples which follow, in order to clarify the proceedure.

1. Identify all soft squeezed (soft external) momenta and put a box around each one.

Identify all soft collapsed (internal) momenta built from a group of hard external

momenta and put a box around each group. At this stage all external momenta

should now be in a box. Draw a black vertex on each box.

2. Connect the black vertices by drawing a connected tree diagram with dashed

lines. Each dashed line must connect on one end to a black vertex and on the

other end to a white vertex. At a black vertex (possibly multiple) dashed lines

can connect to a box. At a white vertex dashed lines connect to other dashed

lines.

28Although we note that loops could easily be included in our diagrammatic approach.
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3. Label each dashed line with a distinct field index A1, A2, ....

4. Ensure momentum conservation at every vertex, which determines the momentum

of each dashed line.

5. The two vertex types are assigned the following factors:

(a) Assign a factor [GQ({k})],A1···Am to each black vertex which connects a box

containing Q ≥ 1 external momenta, {k}, to m dashed lines with field indices

A1 · · · Am, where m ≥ 1. Note that for Q = 1, we have [G1(k)],A1···Am =

NA1···Am .

(b) Assign a factor FA1···As(p1, ...,ps) to each white vertex with s dashed lines

with incoming momenta p1, ...,ps and field index A1 · · ·As, where s ≥ 2.

6. Each diagram is associated with the mathematical expression obtained by multi-

plying together all vertex factors. Repeat the above process from stage 2 onwards

to generate all distinct connected tree diagrams. Gn(k1, ...,kn) is then obtained

by summing over all these diagrams.

If there are consecutive soft momenta, where there are hierarchies amongst the soft

momenta, then follow the rules above for the softest in the hierarchy. Then recursively

repeat the same rules for the next level up in the hierarchy, to calculate soft limits of

correlators sitting within the hard sub-process box(es).

7.2.4 Examples Using Diagrams

We now show some examples of soft limits calculated using the diagrammatic approach.

First we revisit the calculations of §7.2.2 using the rules presented above to check they

reproduce the same answers. Then we consider other soft limits of the trispectrum,

such as single-soft squeezed and various double-soft limits.

Simple Examples Revisited

In Fig. 11 we show the diagram one gets for the squeezed limit of the bispectrum.

Multiplying the vertex factors together, one can check that this diagram reproduces

the soft bispectrum of Eq. (7.14).

In Fig. 12 we show the diagram one gets for the single-soft collapsed limit of the

trispectrum. Multiplying the vertex factors together, one can check that this diagram

reproduces the single-soft collapsed result of Eq. (7.19).
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Figure 11: The only tree-level connected soft diagram for the squeezed limit of the
bispectrum.

Figure 12: The only tree-level connected soft diagram for the single-soft collapsed
limit of the trispectrum.

Other Examples

We now look at the single-soft squeezed limit of the trispectrum, k1 � k2 ≈ k3 ≈ k4.

This has a very similar diagram to the squeezed limit of the bispectrum, and is shown

in Fig. 13, giving the result

lim
k1�k2≈k3≈k4

Tζ(k1,k2,k3,k4) = NAΣAB(k1) [Bζ(k2, k3, k4)],B . (7.25)

Figure 13: The only tree-level connected soft diagram for the single-soft squeezed
limit of the trispectrum.
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Next we consider the double-soft limits of the trispectrum, which in general is given

by taking both k1 � k3 ≈ k4 and k2 � k3 ≈ k4. In this double-soft limit we have three

choices for how k1, k2 and k12 are related, shown in Fig. 10, which we name

k1 ≈ k2 ≈ k12 � k3 ≈ k4 (kite) (7.26)

k12 � k1 ≈ k2 � k3 ≈ k4 (squished) (7.27)

k1 � k2 � k3 ≈ k4 (wonky). (7.28)

1. Double-Soft Kite: k1 ≈ k2 ≈ k12 � k3 ≈ k4

For the kite shape there are four diagrams which can be drawn, shown in Fig. 10(d).

The sum of the diagrams gives the expression (appearing in relative locations in the

expression below)

lim
kite

Tζ(k1,k2,k3,k4)

=NANBPζ(k3),CαABC(k1, k2, k12) +NANBPζ(k3),CDΣAC(k1)ΣBD(k2)

+NANBCPζ(k3),DΣAB(k1)ΣCD(k12) +NANBCPζ(k3),DΣAB(k2)ΣCD(k12).

(7.29)

Note that in order to get the bottom line of Eq. (7.29) we had to expand ζs
k1

and

ζs
k2

to second order in δN expansion, using Eq. (7.24), so as to work to second order

consistently throughout the calculation, i.e. we need to work to second order in both

the δN expansion and the Soft Limit Expansion.

Figure 14: The four distinct tree-level connected soft diagrams for the double-soft
limit of the trispectrum for the kite shape.
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2. Double-Soft Squished: k12 � k1 ≈ k2 � k3 ≈ k4

For the squished shape we have the same diagram as in Fig. 12, leading to the same

expression as Eq. (7.19)

lim
k12 soft

〈ζk1ζk2ζk3ζk4〉

≈ (2π)3δ(k1 + k2 + k3 + k4)Pζ(k1),AΣAB(k12)Pζ(k3),B.
(7.30)

3. Double-Soft Wonky: k1 � k2 � k3 ≈ k4

For the wonky shape we have to use the soft diagram rules recursively. The soft diagram

is shown in Fig. 10(f). The diagram is constructed in two steps. First one draws a box

around k1, which is the softest momentum, and another box around the other three

momenta. The second step, inside the box containing the other three momenta, is to

draw a sub box around k2, which is the next softest momenta, and another around the

remaining two momenta. The resulting expression is

lim
wonky

Tζ(k1,k2,k3,k4) =NAΣAB(k1)
[
NCΣCD(k2) [Pζ(k3)],D

]
,B
. (7.31)

Note that we could expand out the derivatives here, and obtain three terms corre-

sponding to the first three terms of Eq. (7.29), but with αABC(k1, k2, k12) replaced by

its soft limit counterpart limk1�k2 αABC(k1, k2, k12) ≈ ΣAD(k1)ΣBC,D(k2) [330]. The

fourth term in Eq. (7.29), corresponding to the bottom right diagram of Fig. 14, is not

present in the wonky limit, as it will be subdominant in the wonky limit compared to

the other terms.

Figure 15: The tree-level connected soft diagram for the wonky shape double-soft
limit of the trispectrum.

In this section we only considered examples up to the trispectrum for simplicity,

but the rules can be applied to higher n-point function examples. We note that this

procedure goes beyond what is available in the current literature, and in particular

it allows for multiple fields. The resulting expressions provide relations between soft
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limits of n-point ζ correlation functions and derivatives of lower-point ζ correlation

functions, contracted with soft field-space correlation functions.

7.2.5 Inequalities Between Soft Correlation Functions

Following our considerations in §7.2.2 of the Suyama-Yamaguchi inequality [287], Eq. (7.23),

we will now show how to generalise this inequality to higher-point functions. In the

equilateral limit, and for Gaussian fields, [332] found inequalities amongst higher-point

functions using the Cauchy-Schwarz inequality. Here we find inequalities for soft limit

higher-point functions and without assuming Gaussian fields.

Consider a single-soft limit of an n-point function, with momenta ordered such that

k1 ≤ ... ≤ kn. We take the soft momentum to be p ≡
∑r

i=1 ki, where r = 1 corresponds

to a squeezed soft limit, while 2 ≤ r ≤ n− 1 corresponds to a collapsed soft limit. We

will take the hard momenta to have wavenumbers all approximately of the size k∗. We

then apply the soft diagram rules to find

lim
p soft

Gn(k1, ...,kr,kr+1, ...,kn) ≈ [Gr(k1, ...,kr)],A ΣAB(p) [Gn−r(kr+1, ...,kn)],B .

(7.32)

Next we identify the following two vectors

XA ≡ [Gr(k1, ...,kr)],A (7.33)

YB ≡ [Gn−r(kr+1, ...,kn)],B . (7.34)

We note that since ΣAB(p) is a real symmetric matrix it provides an inner product on

the vector space in which X and Y live, which means we can utilise the Cauchy-Schwarz

inequality for X and Y

[XAΣAB(p)YB]2 ≤ [XCΣCD(p)XD] [YEΣEF (p)YF ] . (7.35)

The LHS of Eq. (7.35) gives Eq. (7.32), and since Gr(k1, ...,kr) = Gr(−k1, ...,−kr),

the RHS of Eq. (7.35) can be written as the product of two other soft limits

lim
p soft

G2r(k1, ...,kr,−k1, ...,−kr) ≈ [Gr(k1, ...,kr)],A ΣAB(p) [Gr(−k1, ...,−kr)],B

(7.36)

lim
p soft

G2(n−r)(kr+1, ...,kn,−kr+1, ...,−kn) ≈ [Gn(kr+1, ...,kn)],A ΣAB(p)

× [Gr(−kr+1, ...,−kn)],B (7.37)
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which yields[
lim
p soft

Gn(k1, ...,kr,kr+1, ...,kn)

]2

≤
[

lim
p soft

G2r(k1, ...,kr,−k1, ...,−kr)

]
×
[

lim
p soft

G2(n−r)(kr+1, ...,kn,−kr+1, ...,−kn)

]
.

(7.38)

This can be written in terms of soft limit dimensionless parameters

fn(k1, ...,kr,kr+1, ...,kn) ≡ lim
p soft

Gn(k1, ...,kr,kr+1, ...,kn)

Pζ(p)[Pζ(k∗)]n−2
(7.39)

as

[fn(k1, ...,kr,kr+1, ...,kn)]2 ≤ [f2r(k1, ...,kr,−k1, ...,−kr)]

×
[
f2(n−r)(kr+1, ...,kn,−kr+1, ...,−kn)

]
(7.40)

or, suppressing the momentum dependence for brevity,

f2
n ≤ f2rf2(n−r). (7.41)

We note that f2 = 1 by definition, while f3 = 12
5 f̃NL and f4 = 4τ̃NL. If we fix n = 3

and r = 1, one recovers the soft limit Suyama-Yamaguchi inequality,
(

6f̃NL/5
)2
≤ τ̃NL

[280,287,323,331].

Novel, yet similar, relations exist between the single-soft squeezed (external) limit of

an n-point correlator and the single-soft collapsed (internal) limit of a 2n−2 correlation

function, which follows by fixing r = 1 and n > 3.

For 1 < r < n − 1, a qualitatively different kind of relation emerges between

the single-soft collapsed limit of an n-point correlator and the product of a single-soft

collapsed limit of a 2r-point correlator and a single-soft collapsed limit of a 2(n−r)-point

correlator, i.e. all the soft limits in this case are collapsed ones. The first non-trival

example of this type of inequality occurs for n = 5, r = 2, which relates the collapsed

5-point function to the collapsed 6-point function and collapsed 4 point function.

Note that in the case of single-source inflation, all of the inequalities are saturated,

since the Cauchy-Schwarz inequality becomes an equality in a vector space of only one

dimension.
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7.3 Explicit Expressions

7.3.1 The Γ expansion

The soft limit expressions we generated in §7.2, while compact, are not fully explicit.

This is because these soft limit expressions involve field-space s-point correlation func-

tions of the soft momenta, FA1,...,As(p1, ...,ps), (for the definition see Eq. (7.5)) cor-

responding to the white vertices in the diagrams. These s-point functions need to be

evaluated at the time the last mode exits, tn. However, explicit analytic expressions

for field-space correlation functions are usually calculated when the evaluation time

matches the earlier exit time of the p1, ...,ps.

In this section we will calculate FA1,...,As(p1, ...,ps) in terms of correlation functions

evaluated at the earlier time at which the soft modes exit, for which there are analytic

expressions available. To do so we will need to account for the evolution of field space

perturbations themselves between successive flat hypersurfaces. This can be achieved

by use of a separate universe expansion, analogous to the δN expansion, which allows

us to account for the evolution of field fluctuations between horizon crossing times,

given by the Γ expansion

δφ
(l)
A,k = Γ

(le)
A,Bδφ

(e)
B,k +

1

2
Γ

(lee)
A,BC

[
δφ

(e)
B ? δφ

(e)
C

]
k

+ . . . ,

where Γ
(le)
A,B ≡

∂φ
(l)
A

∂φ
(e)
B

, Γ
(lee)
A,BC ≡

∂2φ
(l)
A

∂φ
(e)
B ∂φ

(e)
C

,
(7.42)

which expresses the perturbations on flat hypersurfaces at some later time tl in terms

of the perturbation at some earlier time te. This was used at first-order in [330] and to

second-order in [322], and objects similar to the Γ matrices have been used by a number

of authors in the past29 [38,55,56,298–302]. We note that formally this expansion could

be extended to include other degrees of freedom, just as we argued for the δN and Soft

Limit Expansion presented in earlier sections, though here we will only consider field

perturbations.

The real power of the Γ matrix expansion is that following a separate universe ap-

proach, they can be calculated with knowledge only of the background cosmology, in

the same way that the δN coefficients can also be calculated using just the background

cosmology. This is what allows the correlations generated in specific models to be ex-

plicitly calculated. In Ref. [330], for example, we gave explicit expressions for ΓA,B

in canonical slow-roll models with sum-separable potentials, and these can easily be

extended to second order. Finally, we note that for the bispectrum and trispectrum,

it will be sufficient to keep terms in the expansion up to first- and second-order, re-

spectively, while we note that for s-point field-space correlation functions, the (s−1)th

29One can generalise the Γ matrices to be k-dependent, as in [57].
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order contributions are required.

In following sections we will make use of the result

N
(e)
B = N

(l)
A Γ

(l,e)
A,B (7.43)

which relates the earlier derivative of N to the later one.

7.3.2 Field-Space Correlation Functions

We can insert Eq. (7.42) into the field-space correlation functions FA1,...,As(p1, ...,ps) to

express them in terms of correlation functions evaluated instead at the earlier times at

which the soft modes exit the horizon, for which there are analytic expressions available.

We first consider the two-point function, evaluated at the late time tn, for some soft

momentum p1 which exits at an earlier time t1 < tn. Inserting the expansion Eq. (7.42)

and taking the two-point function gives the tree level contribution (here, for clarity, we

explicitly state the time label (n), which was suppressed in previous sections)

Σ
(n)
AB(p1) = Γ

(n,1)
A,C Γ

(n,1)
B,D Σ

(1)
CD(p1). (7.44)

Note that the LHS of Eq. (7.44) was the object that appeared in the expressions of the

previous section, such as Eq. (7.14), Eq. (7.19), Eq. (7.25), Eq. (7.29), Eq. (7.30) and

Eq. (7.31). The RHS of Eq. (7.44) involves the Γ matrices – set by the background

cosmology – and the field-space two-point function of the soft momentum at the time

of horizon exit, t1, which, specialising to canonical light fields, has the well known

expression30 [20, 21]

Σ
(1)
CD(p1) =

H(1)2

2p3
1

δCD. (7.45)

For the trispectrum in the double-soft-kite limit, Eq. (7.29), we also need the field

space three-point function of soft momenta p1,p2,p3, evaluated at the later time tn.

Inserting three copies of Eq. (7.42) into the three-point function gives the tree level

contribution [55,56]

α
(n)
ABC(p1, p2, p3) =Γ

(n,1)
A,D Γ

(n,1)
B,E Γ

(n,1)
C,F α

(1)
DEF (p1, p2, p3)

+
[
Γ

(n,11)
A,DEΓ

(n,1)
B,F Γ

(n,1)
C,G Σ

(1)
DF (p2)Σ

(1)
EG(p3) + (A, p1 → B, p2 → C, p3)

]
(7.46)

where the three permutations in the second line are formed by cycling through A →
30 Strictly, this is the result that the two-point function takes after the decaying mode, present at

horizon crossing, has decayed, written in terms of horizon crossing parameters.
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B → C whilst simultaneously cycling the momenta p1 → p2 → p3. The LHS of

Eq. (7.46) appears in Eq. (7.29) with p1 = k1, p2 = k2 and p3 = k12. The RHS

of Eq. (7.46) involves the first and second order Γ matrices – set by the background

cosmology – as well as the two- and three-point functions of the soft momenta at

the time of horizon exit of the soft momenta t1. The two-point function is given by

Eq. (7.45) and the three-point function, again for canonical light fields, is given by [324]

α
(1)
DEF (p1, p2, p3)

=
4π4

p3
1p

3
2p

3
3

(
H(1)

2π

)4 ∑
6 perms

φ̇
(1)
D δEF

4H(1)

(
−3

p2
2p

2
3

pt
− p2

2p
2
3

p2
t

(p1 + 2p3) +
1

2
p2

1 − p1p
2
2

)
(7.47)

for pt ≡ p1 + p2 + p3, and where the sum is over the six permutations of (DEF ) while

simultaneously rearranging the momenta p1, p2, p3 such that the relative positioning of

the p’s is respected.

We could proceed to consider s-point functions rewritten in terms of correlations at

horizon crossing in a similar way, keeping terms in the Γ expansion up to the (s− 1)th

order, but for now we have what is required for the bispectrum and trispectrum. We

give the method for calculating the s-point functions using diagrams in App. C.3.

7.3.3 Explicit Examples

Continuing to consider models with canonical light fields, we will now give our final

expressions for the examples considered in §7.2, using the results of §7.3.2. The results

given in this section can be used to compare a given multi-field model against data.

We will show results for dimensionless versions of the correlation functions.

Bispectrum

The bispectrum can be parametrized in terms of the dimensionless quantity,

fNL(k1, k2, k3) ≡ 5

6

Bζ(k1, k2, k3)

[Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k3)Pζ(k1)]
(7.48)

known as the reduced bispectrum.

For the squeezed limit of the bispectrum, the result Eq. (7.14) becomes

lim
k1�k2,k3

Bζ(k1, k2, k3) ≈ −N (3)
A N

(3)
E N

(3)
E Γ

(3,1)
A,C Γ

(3,1)
B,C

dφ
(3)
B

dN

H(1)2

2k3
1

H(3)2

2k3
3

+ 2N
(3)
A N

(3)
EBN

(3)
E Γ

(3,1)
A,C Γ

(3,1)
B,C

H(1)2

2k3
1

H(3)2

2k3
3

(7.49)
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where we used Eq. (7.44) and Eq. (7.45) for ΣAB(k1), and we differentiated the δN

expression for Pζ(k3).

If the bispectrum is large enough to be observed by present or near future probes, the

second term in Eq. (7.49) must be dominant, and we can then form the dimensionless

reduced bispectrum

lim
k1�k2,k3

fNL ≡
5

12

lim
k1�k2,k3

Bζ(k1, k2, k3)

Pζ(k1)Pζ(k3)
≈ 5

6

N
(3)
A N

(3)
EBN

(3)
E Γ

(3,1)
A,C Γ

(3,1)
B,C

N
(3)
D N

(3)
D N

(3)
F N

(3)
G Γ

(3,1)
F,H Γ

(3,1)
G,H

, (7.50)

which is dependent on the two scales k1 and k3 through the two horizon crossing times.

We could use Eq. (7.43) to write this more succinctly as

lim
k1�k2,k3

fNL ≈
5

6

N
(1)
A N

(3)
BCN

(3)
B Γ

(3,1)
C,A

N
(3)
D N

(3)
D N

(1)
E N

(1)
E

, (7.51)

which can be contrasted with the usual δN formula for the reduced bispectrum, valid

for close to equilateral configurations (under the same assumptions)

lim
k1≈k2≈k3

fNL ≡
5

6

lim
k1≈k2≈k3

Bζ(k1, k2, k3)

[Pζ(k1)Pζ(k2) + 2 perms]
=

5

6

N
(3)
A N

(3)
ABN

(3)
B

N
(3)
C N

(3)
C N

(3)
D N

(3)
D

, (7.52)

which retains dependence on only a single horizon crossing time. In [330] we found

that the difference between Eq. (7.51) and Eq. (7.52) can be very important for models

with significant scale dependence. For this we looked at a simple two-field example of

a mixed inflaton-curvaton model with curvaton self-interactions. For that model it was

possible to derive analytic expressions for the derivatives of N and the first-order Γ

matrices. We expect it to be possible to calculate higher-order Γ matrices in this model

as well, but we leave this for future work.

Trispectrum

Turning to the trispectrum, let us first review results for the case in which all modes

cross the horizon at close to the same time, if the trispectrum is observable by present

or near future observations then in this case it is given by [242,328]

Tζ(k1,k2,k3,k4) =τNL [Pζ(k13)Pζ(k3)Pζ(k4) + 11perms]

+ gNL [Pζ(k2)Pζ(k3)Pζ(k4) + 4 perms]
(7.53)

where

τNL ≡
N

(3)
ABN

(3)
B N

(3)
ACN

(3)
C

(N
(3)
D N

(3)
D )3

(7.54)

154



CHAPTER 7. THE SEPARATE UNIVERSE APPROACH TO SOFT LIMITS

gNL ≡
N

(3)
ABCN

(3)
A N

(3)
B N

(3)
C

(N
(3)
D N

(3)
D )3

(7.55)

are dimensionless parameters which represent the amplitude of two distinct shapes.

This decomposition into two shapes is only useful for close to equilateral configura-

tions. This is because, in soft limits, the square brackets have the same k-dependence as

each other at leading order in the soft limit - that is, there isn’t a unique decomposition

into different shapes between them.

This is regardless of whether τNL and gNL are constants, since the split requires

different configuration dependence. In the case where τNL and gNL are constants, they

can, and in general will, be different to the dimensionless expressions we present in the

next few pages, because the terms that appear in these new dimensionless expressions

are different - since they depend on Γ matrices for example, which are not constrained

to be constants if τNL and gNL are constants.

For soft limits one can, however, form dimensionless versions of the trispectrum.

In the case of the single-soft limit of the trispectrum, we will form the single-soft

dimensionless trispectrum by dividing the trispectrum by one power spectrum evalu-

ated on the soft momentum, and two copies of the power spectrum evaluated on the

hard momentum. For the double-soft limit, we will form the double-soft dimensionless

trispectrum by dividing the trispectrum by two copies of the power spectrum evaluated

on the soft momentum, and one power spectrum evaluated on the hard momentum.

Single-Soft Squeezed Trispectrum

For the single-soft squeezed limit of the trispectrum, we obtained the result Eq. (7.25),

which contains the derivative of the near-equilateral bispectrum, Bζ(k2, k3, k4). The

standard δN expression in near equilateral configurations can be used to give an ex-

pression for this piece, which we then need to differentiate. Focusing again on the case

in which the bispectrum and trispectrum are observably large, and using Eq. (7.44) to

write ΣAB(k1) in terms of known quantities and Γ matrices we find

f ext
4 (k1,k2,k3,k4) ≡

lim
k1�k2≈k3≈k4

Tζ(k1,k2,k3,k4)

3Pζ(k1) [Pζ(k4)]2
(7.56)

≈
N
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(4)
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(4)
C N

(4)
D

N
(4)
G N

(4)
H Γ

(4,1)
G,F Γ

(4,1)
H,F (N

(4)
I N

(4)
I )2

+
N

(4)
A Γ

(4,1)
A,E Γ

(4,1)
B,EN

(4)
CDN

(4)
CBN

(4)
D

N
(4)
G N

(4)
H Γ

(4,1)
G,F Γ

(4,1)
H,F (N

(4)
I N

(4)
I )2

.

(7.57)
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We can again use Eq. (7.43) to write this more succinctly as

f ext
4 (k1,k2,k3,k4) ≈

N
(1)
A Γ

(4,1)
B,AN

(4)
CDBN

(4)
C N

(4)
D

N
(1)
E N

(1)
E (N

(4)
F N

(4)
F )2

+
N

(1)
A Γ

(4,1)
B,AN

(4)
CDN

(4)
CBN

(4)
D

N
(1)
E N

(1)
E (N

(4)
F N

(4)
F )2

. (7.58)

If we had taken the near-equilateral configuration, Eq. (7.53), and formed the anal-

ogous reduced trispectrum and pushed this expression towards the single-soft squeezed

limit, we would have found a contribution both from the τNL and the gNL shape in this

limit, and we would have arrived at a similar expression to Eq. (7.58) but with all the

N derivatives appearing with the same superscript and Γ
(4,1)
A,B replaced with δAB. Our

expression can be significantly different from this naive one.

Single-Soft Internal Trispectrum

We now proceed to produce similar expressions for the other soft limits. For the single-

soft collapsed limit of the trispectrum, we obtained the result Eq. (7.19). The derivative

of the power spectrum gives

Pζ(k1),A = 2NBANCΣBC(k1) +NBNCΣBC,A(k1) . (7.59)

Utilising this expression, keeping only the first term, we find

f int
4 (k1,k2,k3,k4) ≡

lim
k12�k1≈k2≈k3≈k4

Tζ(k1,k2,k3,k4)

4Pζ(k12) [Pζ(k4)]2
≈
N

(4)
ABN

(4)
A Γ

(4,12)
B,C Γ

(4,12)
D,C N

(4)
EDN

(4)
E

N
(12)
F N

(12)
F (N

(4)
G N

(4)
G )2

.

(7.60)

Considering Eq. (7.53) for close to equilateral configurations and pushing this ex-

pression towards the collapsed limit, we could have found a contribution from the τNL

shape alone, and a similar expression to Eq. (7.60), but with all the N derivatives ap-

pearing with the same superscript and Γ
(4,12)
A,B replaced with δAB. Once again our new

expression can be significantly altered from this naive expression.

Double-Soft Trispectrum

1. Kite

We had Eq. (7.29) from the soft diagrams, so here we can once again use Eq. (7.44)

and Eq. (7.45) to write ΣAB(k1) and ΣAB(k2) in terms of known quantities and Γ

matrices, and now we also need to use Eq. (7.46) with Eq. (7.47) and Eq. (7.45) to

write α
(4)
ABC(k1, k2, k12), in terms of horizon crossing expressions and Γ matrices – in

this case the second order Γ coefficient is necessary. We note that there is nothing to
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stop αABC(k1, k2, k12) from becoming large even in canonical models, because it has

evolved from time t1 to time t4.

Keeping all the terms that can be significant and taking ks ≈ k1 ≈ k2 ≈ k12 and

kh ≈ k3 ≈ k4 with ks � kh to define the kite limit, then the dimensionless quantity

appropriate here is

fkite
4 (k1,k2,k3,k4) ≡

lim
kite

Tζ(k1,k2,k3,k4)

2 [Pζ(ks)]
2 Pζ(kh)

(7.61)

≈
N

(h)
A N

(h)
B N

(h)
FCN

(h)
F Γ

(h,s)
A,DEΓ

(h,s)
B,D Γ

(h,s)
C,E(

N
(s)
G N

(s)
G

)2
N

(h)
H N

(h)
H

+
N

(h)
A N

(h)
B

(
N

(h)
ECDN

(h)
E +N

(h)
ECN

(h)
DE

)
Γ

(h,s)
A,F Γ

(h,s)
C,F Γ

(h,s)
B,I Γ

(h,s)
D,I(

N
(s)
G N

(s)
G

)2
N

(h)
H N

(h)
H

+
2N

(h)
A N

(h)
BCN

(h)
E N

(h)
EDΓ

(h,s)
A,F Γ

(h,s)
B,F Γ

(h,s)
C,I Γ

(h,s)
D,I(

N
(s)
G N

(s)
G

)2
N

(h)
H N

(h)
H

(7.62)

We note once again that considering Eq. (7.53) for close to equilateral configurations

and pushing this towards the kite limit, both the τNL and gNL shapes would have

contributed in this limit and we would have found similar terms to the last two lines of

Eq. (7.62). The term in the first line of Eq. (7.62), however, is qualitatively different,

and we believe is a new form of possibly significant contribution to the trispectrum,

which could be large, even in models where the equilateral gNL and τNL are small. We

hope to investigate this further in future work.

2. Squished

The squished limit gave the same expression Eq. (7.30) as the single-soft collapsed

limit Eq. (7.19). We refer to the corresponding result Eq. (7.60) for the explicit form

of the reduced trispectrum in this case.

3. Wonky

For this limit we had Eq. (7.31). The dimensionless trispectrum relevant here is

fwonky
4 (k1,k2,k3,k4) ≡

lim
k1�k2�k3≈k4

Tζ(k1,k2,k3,k4)

2Pζ(k1)Pζ(k2)Pζ(k4)
(7.63)

≈
N
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A,E Γ
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(4)
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)
,B

N
(4)
F N

(4)
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(1)
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(1)
G N

(2)
H N

(2)
H

(7.64)

where we have again neglected both first and second derivatives of Σ
(s)
AB(ks). Note the

157



CHAPTER 7. THE SEPARATE UNIVERSE APPROACH TO SOFT LIMITS

comments concerning the kite limit, and a new contribution to the trispectrum, also

apply here.

7.4 Conclusion

In this chapter we developed a formalism for calculating soft limits of n-point inflation-

ary correlation functions for multiple light fields. This formalism allows for squeezed

(external) or collapsed (internal) soft modes and for multiple soft modes either of the

same size or with a hierarchy amongst the soft modes. We used a diagrammatic ap-

proach to organise the separate universe Soft Limit Expansion Eq. (7.10) to allow for

explicit computation of any n-point ζ correlators in soft limit polygon shapes.

We applied our results to derive new, explicit expressions for the single- and double-

soft limits of the trispectrum for a variety of quadrilateral shapes. A highlight of

this section was the identification of possibly large contributions to the trispectrum in

canonical models which are missed by the usual analysis. We also gave a new, direct

proof of the soft limit version of the Suyama-Yamaguchi inequality and generalized this

to give an infinite tower of new inequalities between soft limits of n-point correlators

which are constrained by products of 2r- and 2(n − r)-point equilateral correlators,

with 1 ≤ r ≤ n − 2. The case of n = 3, r = 2 is the well-known Suyama-Yamaguchi

inequality – with other choices of n and r representing new inequalities. All of these

are saturated in single-source models, and their violation may signify a breakdown of

the inflationary paradigm.

We emphasize that these results are important for future observations which can

probe a larger range of scales. Accurate theoretical predictions may be necessary,

even for the trispectrum, and we may hope to rule out large classes of inflationary

models by observations of these soft limits. For example, DES, Euclid may provide

new constraints in the near future, and µ-distortion experiments such as PIXIE may

be able to give sensitivity three orders of magnitude better than the current limits on

spectral distortion, giving us access to an even wider range of scales, though this may

occur later in the future.
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Chapter 8

Conclusion

In this thesis we have pushed forward our understanding of the early universe, de-

veloping the connection between inflationary theory and observables. We will now

recapitulate the original motivation for this thesis, then summarise our findings and

present a critique of the studies before suggesting future directions for research on this

topic. We begin with the motivation for this thesis.

The broad motivation for this thesis was to further our knowledge on the precise

microphysics of inflation, the phase necessary for resolving the horizon problem. More

specifically, the work presented here falls into the area of inflationary observables -

providing theoretical predictions of these observables from inflationary models. The

hope is that this work will help towards discerning the true nature of the physics of

inflation by comparing future observations against the theoretical predictions made in

this thesis.

Our choice of inflationary models was motivated in two ways: from the top-down

and from the bottom-up. In the top-down approach one begins with a well-motivated

UV complete theory, such as string theory, and derives from it the specific predictions

of the inflationary observables. In the bottom-up approach one begins with a generic

low energy effective theory (or classes of theories), such as multi-field inflation, and

derives correspondingly general predictions of observables from this class of models.

This thesis is in no way a complete description of the study of inflationary ob-

servables. Instead we hope that it has advanced the current knowledge of inflationary

predictions for the models we considered. Below we summarise the findings of this

thesis, providing also a critique of the studies.

In Part I we took the top-down approach by selecting our model of inflation from

string theory. In Chapter 4 we investigated a model of natural inflation derived from

a string theory compactification in the warped resolved conifold geometry, using a D-

brane position modulus as our inflaton candidate. The novelty of this work was two-fold.

First, we applied knowledge of the analytic solutions to the Laplace equation on the
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resolved conifold to allow us to investigate D-brane inflation near the tip – this was not

possible in previous work using the deformed conifold, where analytic solutions to the

Laplace equation are not known. Second, we took advantage of this near-tip parameter

space to give a natural inflation model containing an observably-large value of the

tensor-to-scalar ratio – this wasn’t achieved in previous D-brane models of inflation

and is also hard to arrange in simple closed-string models of natural inflation.

In critique of the work of Chapter 4, we note a few shortcomings. Firstly, moduli

stabilization of the warped resolved conifold throat was not addressed in detail, under

the assumption that there were other warped throats in which moduli stabilization,

uplifting to a de Sitter vacuum and links to standard model physics occur. However,

this assumption is not entirely satisfactory if one wants to understand a complete model.

This shortcoming can be seen as a specific example of a wider problem of string inflation

models - that is, the tension between working locally, in an area of the compactification

in which the metric is known, and global effects of the compactification, which can’t

be probed locally. In order to overcome this more general problem, other approaches

are needed. One may be a numerical relativity approach, where Ricci-flat geometries

are built and then probed numerically, without writing down a global metric.

A second shortcoming is that the presented model of natural inflation with an

observably-large value of the tensor-to-scalar ratio was contrived in its setup, requir-

ing large amounts of warping, wrapping, flux, and specific initial conditions as well as

fine-tuned choices for coefficients in the potential. One should rightly ask why nature

would choose this setup over other possibilities. This is also part of a larger problem

faced by string theory models of inflation, which is that although the models occur in

UV complete theories, they still have problems that inflation theories outside of string

theory suffer from: the problem of initial conditions, the measure problem and associ-

ated problems. Perhaps a better understanding of string theory will shed light on these

problems, but for now the field doesn’t suggest any universally accepted solutions to

these difficulties. Future research projects in this area could investigate more system-

atically why it is hard to produce a large tensor-to-scalar ratio in D-brane models, and

the relation of this to the weak gravity conjecture.

In Part II we took the bottom-up approach beginning with a general class of low

energy effective multi-field inflation models and deriving observables from these models.

In particular we focussed on the effects of primordial non-Gaussianity. The overarching

theme of this part of the thesis is that multi-field inflation models can produce primor-

dial non-Gaussianity which couples long-wavelength modes to short-wavelength modes,

leading to a variety of observable effects.

In Chapter 5 we gave a new explanation for the observed CMB power asymmetry

using a long-wavelength mode of a second light field to modulate the short-wavelength

scalar power spectrum. By using higher-order terms in the δN expansion, we allowed
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for a novel non-zero trispectrum, giving a cubic-term asymmetry. This meant the re-

quirements on the bispectrum were relaxed compared to previous work, with the model

allowing for an observably-allowed value for fNL, which wasn’t possible in previous work

neglecting the trispectrum.

However, this explanation comes with its own problems related to fine-tuning. Hav-

ing a large trispectrum compared to the bispectrum implied that our observable patch

was fine-tuned compared to others. Moreover, a necessary condition for the explana-

tion was that the isocurvature field contributed a small amount towards the power

spectrum of the curvature perturbation - perhaps another fine-tuning. Also, the direc-

tional dependence of the cubic term used is different to one constrained by data and

as such a more complete data analysis may turn out to require different constraints on

the model parameters. While these are all problems with the presented model, they

don’t conflict with the proof-of-concept nature of this work, which is that including

higher-order terms, in particular involving the trispectrum, can help relieve tension

between observations of asymmetry and the non-observation of the bispectrum. Future

research is needed to construct realistic models which produce the required asymmetry

and give suitably small levels of non-Gaussianity. Also, the strong scale dependence of

the asymmetry needs to be addressed.

Chapter 6 reviewed our study of the squeezed limit of the bispectrum in multi-field

inflation, where one long-wavelength mode acts as a background for the two shorter-

wavelength modes. This work was the first calculation of its kind, generalizing calcu-

lations of the squeezed limit of the bispectrum from single-field models to multi-field

models. This is the observationally interesting case, since single-field models predict

a vanishingly-small squeezed limit of the bispectrum, so in order to compare with fu-

ture (hopefully non-zero) observations of the squeezed limit of the bispectrum, these

multi-field predictions are necessary. The result was very general, not relying on the

specifics of the multi-field model, relating the squeezed bispectrum to the field-space

power spectra and their field derivatives. We made use of a separate-universe type

Γ-expansion relating field perturbations at late horizon exit time to those at the earlier

horizon exit time, with coefficients determined by the background cosmology. Applying

our general results to a mixed inflaton-curvaton model with curvaton self-interactions,

gave us an example in which using our results gave a prediction which was 20% more

accurate in the highly squeezed limit.

One criticism of the above work is that observations may not be able to probe such

highly-squeezed limits, in which this work is more accurate than previous studies. We

point to future large-scale structure surveys, such as Euclid, and experiments to detect

CMB µ-distortion as examples where a highly-squeezed limit is probed, in which case

these results will be important. Future work could be done here to allow for heavy

fields and non-canonical kinetic terms, though we expect the results to be similar in
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spirit to those presented in this thesis. Moreover, one could extend to next-order in the

soft limit, keeping higher-order terms in k1/k3. This is necessary to use these analytic

results to compare against theoretical numerical work, which can’t efficiently probe the

highly squeezed limit, and more importantly, to compare against observations which

are not in such a highly squeezed limit.

In Chapter 7 we generalized the work on the squeezed limit of the bispectrum to

include any soft limit of any higher-point inflationary correlation function for multi-field

models. The soft limits occur when the long wavelength modes act as a background

in which the shorter wavelength modes interact. We again used separate universe

techniques to perform the calculations. In doing so, we gave an even simpler form

for the squeezed limit of the bispectrum, repackaging separate terms that appeared

in Chapter 6. We used a Feynman-diagram type method to organise the soft limit

expansion. We focussed primarily on the trispectrum, giving explicit formulae for

all possible single- and double-soft limits for general multi-field models. We required

higher-order terms in the Γ-expansion introduced in Chapter 6 and noted these terms

could lead to novel shapes, for example in the trispectrum. We also presented an infinite

tower of inequalities between soft limits of correlation functions, generalizing the soft

Suyama-Yamaguchi inequality.

A potential criticism of this work is that the higher-order correlators, such as the

trispectrum, are not well constrained by current data. However, we note that the cur-

rent constraints from the data only apply across a limited range of CMB scales. It

might be that it’s possible to constrain the higher-point correlators in soft polygon

configurations using future large-scale structure surveys and CMB µ-distortion exper-

iments, as noted above for the squeezed limit of the bispectrum. Future work could

investigate the new contribution to the kite-double-soft trispectrum shape, which can

be large even in models where the equilateral configuration trispectrum is small. Fur-

thermore, one could explore to what extent double-soft limits probe the underlying

symmetries of the multi-field model, which may be sensitive to a non-linearly realized

non-Abelian symmetry of which the multiple fields may be Goldstone bosons. It is also

possible the double-soft limits are sensitive to the curvature of the field space, and may

provide information of the underlying metric on field space.

In the above paragraphs we discussed potential future research projects inspired

by the work presented in this thesis. We now give some other future research ideas

inspired more broadly by the general area of research related to connecting theory to

observables in inflation.

A key task for future research could utilise recent progress in numerical calculations

of inflationary observables, linking this to data pipelines to more strongly constrain

models with non-Gaussian signatures. This could potentially be done in such a way

as to avoid using the shape templates, such as the local, equilateral and orthogonal
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shapes for the bispectrum. This would provide a more robust way to check parameter

constraints on models and avoid the data loss associated to fitting to these shape

templates.

This thesis motivates studying multi-field models from the top-down perspective,

as the phenomenology of them is more likely to be detected by future experiments

than single-field inflation models. Most existence proofs in string theory however have

focussed on arranging just single-field inflation. Thus, it would be interesting to survey

the multi-field models from string compactifications and see how to categorize them

and what observables they predict which have a specifically stringy, multi-field nature.

A better understanding of time-dependent solutions in the top-down and bottom-

up approaches may be necessary for a more systematic study of string theory and

inflationary cosmology. This requires extending string theory beyond the adiabatic

approximation and would be most relevant for geometries with string-scale curvature.

Both of these seem out of reach of our current understanding of string theory solutions.

More broadly, the reheating stage in the early universe requires a more detailed

treatment, and future research could link inflationary theories more solidly to reheating

phenomenology. In particular, it would be interesting to know precisely how to link

multi-field models to the standard model sector.

It’s difficult to predict what direction future research in this area will take. In

the post-Planck era, inflationary cosmology needs to find new ways of distinguishing

between competing scenarios if inflation is to remain predictive. Theoretical studies

should have in mind particular observational consequences and special attention should

be paid to scenarios which we might be able to confirm/rule out with the next wave of

experiments.

Exciting, elementary questions remain unanswered. What fields drive inflation?

What sets the initial conditions for inflation? What observational signatures are in-

evitable? Can inflation be embedded in a UV-complete theory? How do we link

inflation robustly to reheating and the standard model? Is string theory the correct

UV completion of gravity and does it have cosmological consequences, in particular for

inflation? What new astronomical observations will help us to probe the very early

universe?

Answering these questions will be one of the greatest scientific achievements of our

time, allowing us to look back to the earliest period in the history of the universe. It’s

amazing to think that everything we’ve ever seen, from galaxies to planets and even

humans, could have originated from quantum fluctuations stretched during inflation.
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Appendix A

Appendices for D-branes in the

Warped Resolved Conifold

A.1 D-brane Backreaction

The D5-brane can backreact on both the warp factor and the internal geometry, so we

need to estimate the size of each. Our strategy will be to first assume the backreaction

on the internal geometry is small, so that we have an ISD solution with warp factor H.

We then compute the backreaction on this warp factor. In finding that this is small,

we use the non-backreaction of the warp factor to compute the possible backreaction

on the internal geometry. We will find that this is small too, making our approach

self-consistent.

We should begin with the full action for the SUGRA background and include terms

in the action for all localized sources, which include the stack of N D3-branes located

at the north pole of the finite S2, with no fluxes turned on, as well as the mobile probe

wrapped D5-brane with flux. The full action is then

S =
1

2κ2
10

S̃ −NT3

∫
M4

d4χ
√
−det(P4[gMN ]) +NT3

∫
M4

P4[C4]

− T5

∫
M4×Σ2

d6ξ
√
−det(P6[gMN + FMN ]) + T5

∫
M4×Σ2

P6 [C6 + C4 ∧ F2]

(A.1)

where S̃ is given by (??). In our WRC geometry, C6 = 0, B2 = 0 and we’ve turned on

the flux F2 = q
2 sin θ1dθ1 ∧ dφ1 on the D5-brane.

We now need to promote the worldvolume integrals to integrals over the full M10

space, in order to vary this action and get the equations of motion. To do this we

introduce the following D3 charge densities

ρND3
3 =

N
√
g6
δ(r)δ(ψ)δ(θ2)δ(φ2)δ(θ1)δ(φ1) (A.2)
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ρpD5
3 =

p√
h4
δ(r − r∗)δ(ψ − ψ∗)δ(θ2 − θ∗2)δ(φ2 − φ∗2) (A.3)

ρpqD5
3 =

p
√
g6

(2πα′)
(q

2
sin θ1

)
δ(r − r∗)δ(ψ − ψ∗)δ(θ2 − θ∗2)δ(φ2 − φ∗2) (A.4)

so that the stack of N D3’s are at the tip, y = 0, and the p-wrapped probe D5 is at

(r∗, ψ∗, θ∗2, φ
∗
2). The metric h4 is the warped metric on the 4D space transverse to the

brane in the extra 6 dimensions. We then define the 6D unwarped densities (with a

tilde) via

ρ̃ND3
3 = H3/2ρND3

3 ρ̃pqD5
3 = H3/2ρpqD5

3 . since
√
g6 = H3/2

√
g̃6. (A.5)

For the 4D density, we have

ρ̃pD5
3 = HρpD5

3 since
√
h4 = H

√
h̃4. (A.6)

Note that the Hodge dual ?6 of the warped 6D metric g6 acts on a 6D warped density

ρ as

?6ρ = ρ
√
g6 dr ∧ dψ ∧ dθ1 ∧ dφ1 ∧ dθ2 ∧ dφ2. (A.7)

We then have the full 10D action

S =
1

2κ2
10

S̃ − T3

∫
M10

d10x
√
−det(P4[gMN ])

√
g6ρ

ND3
3 + T3

∫
M10

C4 ∧ ?6ρ
ND3
3

− T5

∫
M10

d10x
√
−det(P6[gMN + FMN ])

√
h4ρ

pD5
3 + T5

∫
M10

C4 ∧ ?6ρ
pqD5
3 .

(A.8)

We obtain the stress tensors from the DBI part of each local brane action. For the

stack of N D3-branes we get the following non-zero components for the stress-energy

tensor

T 0
0 = T 1

1 = T 2
2 = T 3

3 = −T3ρ
ND3
3 , (A.9)

so that

(
Tmm − Tµµ

)
ND3

= 4T3ρ
ND3
3 (A.10)

where we’ve used the shorthand

Tmm − Tµµ ≡
9∑

M=4

TM
M −

3∑
M=0

TM
M . (A.11)

Now we do a similar calculation for the p-wrapped D5-brane. Neglecting the O(α′2q2)
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flux contribution, we get the following non-zero components for the stress-energy tensor

T 0
0 = T 1

1 = T 2
2 = T 3

3 = T θ1θ1 = T φ1φ1 = −T5ρ
pD5
3 (A.12)

so that
(
Tmm − Tµµ

)
pD5

= 2T5ρ
pD5
3 . (A.13)

Varying the full 10D action with respect to C4 gives the Bianchi identity

dF̃5 = H3 ∧ F3 + 2κ2
10

(
T3 ?6 ρ

ND3
3 + T5 ?6 ρ

pqD5
3

)
. (A.14)

Using the warped background ansatz, this becomes

∇̃2α = ie2AGmnp ?6 G
mnp

12Imτ
+ 2e−6A •m α •m e4A + 2κ2

10e
2A
(
T3ρ

ND3
3 + T5ρ

pqD5
3

)
.

(A.15)

The trace of the Einstein equations can be written [109]

∇̃2e4A =
κ2

10

2
e2A

[
1

4
(Tmm − Tµµ )ND3 +

1

4
(Tmm − Tµµ )pD5

]
+ e2AGmnpG

mnp

12Imτ
+ e−6A(•mα •m α+ •me4A •m e4A).

(A.16)

Combining (A.15) and (A.16) gives

∇̃2(e4A − α) =
e2A

24Imτ
|iG3 − ?6G3|2 + e−6A| • (e4A − α)|2

+ 2κ2
10e

2A

(
1

4
(Tmm − Tµµ )ND3 − T3ρ

ND3
3

)
+ 2κ2

10e
2A

(
1

4
(Tmm − Tµµ )pD5 − T5ρ

pqD5
3

)
.

(A.17)

The first two terms on the RHS are non-negative. The third term actually vanishes

by (A.9), but note that this is a special result for D3-branes. The fourth term for the

D5-brane doesn’t vanish, so we need to work out its size. It can be written in terms of

the warp factor as

2κ2
10H−1/2

(
1

4
(Tmm − Tµµ )pD5 − T5ρ

pqD5
3

)
. (A.18)

In order to estimate its size we need the warp factor. For the moment let’s assume

(A.18) is small so that we can ignore it. We’ll come back to the size of this term after

we have computed the backreaction on the warp factor. This allows us to begin with

the usual ISD solution G− = 0 = Φ−.
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Backreaction on the Warp Factor

We now compute the backreaction on the warp factor. We write the trace of Ein-

stein’s equations (A.16) in the form

−∇̃2e−4A = 2κ2
10T3ρ̃

ND3
3 + κ2

10T5H1/2ρ̃pD5
3 . (A.19)

We begin with the warp factor arising as the Green’s function on the WRC for a stack

of N D3’s placed at the north pole θ2 = 0 of the S2 at r = 0 to get H. The result near

the tip r = rmin, but away from the north pole, is given by

H =
4πgsNl

4
s

r4
min

. (A.20)

We now consider corrections to this from modifying the Green’s function equation to

(A.19). We will compute the size of each term on the RHS of (A.19), and find that the

dominant one is from the stack.

We want to compare factors in front of dimensionless delta functions, and since

r has dimensions of length, we should look at dimensionless ρ, and use the scaling

property of delta functions δ(r) = 1
3uδ(ρ). Let’s define the following combinations of

dimensionless delta functions

δ(M6) ≡ δ(ρ)δ(ψ)δ(θ2)δ(φ2)δ(θ1)δ(φ1) (A.21)

δ(M∗4 ) ≡ δ(ρ− ρ∗)δ(ψ − ψ∗)δ(θ2 − θ∗2)δ(φ2 − φ∗2). (A.22)

Then the first term on the RHS of (A.19) coming from the stack is

2κ2
10T3ρ̃

ND3
3 = 3(2π)5 Ngsl

4
s

r3
minu

3 sin θ1 sin θ2
δ(M6). (A.23)

The second term in (A.19) coming from the p-wrapped D5-brane probe, evaluated at

r ≈ rmin � u is

κ2
10T5H1/2ρ̃pD5

3 =
(2π)3

16

25Ngsl
4
s

rminu5 sin θ2
δ(M∗4 ), (A.24)

using T5 = [(2π)5gsl
6
s ]
−1. We see that the probe D5-brane source term for the warp

factor is much smaller than that sourced by the stack of N D3-branes, as long as(rmin

u

)2
� 48

25
(2π)2 1

sin θ1
≈ 76

sin θ1
, (A.25)

and since sin θ1 ≤ 1, the RHS of (A.25) is greater than 76. So our p-wrapped D5-brane

can be neglected in the warp factor equation since we have rmin � u.
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Backreaction on the internal geometry

Now that we’ve shown that the probe approximation for the warp factor is self-

consistent, we can go back to the equation for the internal geometry to check the

validity of assuming (A.18) is small.

Using the trace of the energy momentum tensor for the D5-brane given in (A.13)

and the unwarped density in (A.5) gives (A.18) to be

2κ2
10T5H−1/2

(
1

2
H−1ρ̃pD5

3 −H−3/2ρ̃pqD5
3

)
. (A.26)

Now that we have the warp factor, we can now check the size of each term individually,

and check that they are small relative to the LHS of (A.17), which scales as ∇̃2Φ− =

O(δ/r2
min) in the small r region, and with Φ− = e4A − α = δ which is small. The first

part of (A.26) is

κ2
10T5H−3/2ρ̃pD5

3 =
25π

32

1

Ngsl4s

r7
min

u5 sin θ2
δ(M∗4 ). (A.27)

For this term to be negligable, we need to impose

γ � 1 (A.28)

where γ ≡ β

δ
, β ≡ 25π

32

1

Ngsl4s

r9
min

u5 sin θ2
. (A.29)

This may be possible to arrange for given values of rmin � u in the SUGRA limit

of large N . Note that ls � u is required for the curvature of the WRC geometry

to not be too large - necessary for the SUGRA approximation. We also work in the

perturbative regime of small gs. There is no restriction on the size of rmin/ls, as rmin

isn’t a curvature term, it’s just a coordinate distance in the WRC, and is set by the

minimum of the potential. We see that as long as we stay away from θ2 = 0, (A.28) can

be satisfied for a suitable potential. Note that this condition (A.28) is more stringent

than the condition from the backreaction on the warp factor.

The data from Table 4, together with the values of p in (4.61) and q in (4.71) gives

γ =
25π

32δ

1

Ngsl4s

r9
min

u5 sin θ2
(A.30)

≈ 8× 10−8 � 1 (A.31)

as required.
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The second term in (A.26) is

−2κ2
10T5H−2ρ̃pqD5

3 = −25π

32

1

Ngsl4s

r7
min

u5 sin θ2

[
48π1/2 q√

Ngs

]
δ(M∗4 ) (A.32)

which is small compared to δ/r2
min if

q � 10−2γ−1
√
Ngs, (A.33)

which for the q in (4.71) requires

1.2× 10−15 N3/2

g
1/2
s δB

(
u

ls

)4( u

rmin

)2

� 10−2γ−1
√
Ngs. (A.34)

Substituing γ = β/δ and tidying up means we require

1

Bg2
sδ

2 sin2 θ2

u

ls

(
rmin

ls

)7

� 3.4× 1012 (A.35)

which is independent of N . Putting in the data from Table 4 gives

1

Bg2
sδ

2 sin2 θ2

u

ls

(
rmin

ls

)7

∼ 5× 106 � 3.4× 1012. (A.36)

It’s interesting to note that this condition on q from backreaction is less restrictive

than that coming from our approximation for F in (4.57), which we used to get a

Planckian decay constant. This was shown to be satisfied for our data in (4.74). It

seems that setting a Planck scale decay constant together with a hierarchically smaller

GUT scale of inflation is a more delicate procedure than maintaining control over the

backreaction from the flux of a wrapped brane.

A.2 Corrections from the 4D Ricci Scalar

We now consider the effect of a non-negligible 4D Ricci scalar R4. The solution to the

full Poisson equation (4.10) is denoted Φ−. For a 4D quasi-de Sitter spacetime, we have

that

∇̃2Φ− = R4 ≈ 12H2 ≈ 4V

M2
p

≈ ϕ(y) + λΦ−. (A.37)

By the Friedmann equation, H2 = V/(3M2
p ), where we have seperated the Φ− depen-

dence from the rest of the potential. The potential V , and hence ϕ(y) and λ, depend

on the choice of probe D-brane.

For a probe D3-brane, we have ϕ(y) = V0, a constant and λ = 4T3/M
2
p . This can
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be solved exactly, in the region rmin � r � rUV, in which case the geometry of the SC

is relevant [110]. The solutions are modified Bessel functions with argument x ≡
√
λr.

When these are expanded for small x, a mass term appears as the leading curvature

correction, leading to the eta problem as seen from the 10D supergravity perspective.

Note that in [170] the Ricci scalar term was omitted from the equation of motion for

Φ−. However, it was argued that a mass term should be added to the final potential.

The origin of this mass term is this curvature.

We now consider the case of a probe D5-brane moving in the WRC throat, in which

case ϕ(y) is not constant. The solution to (A.37) in this case can be derived using the

expansion method developed in [110], which was originally used for the case where the

perturbations to Φ− come from fluxes and curvature at leading order. The expansion

takes the form

Φ− =
∞∑
n=0

Φ
[n]
− (A.38)

where Φ
[0]
− (y) = Φ−(y) + Φh(y) (A.39)

and Φ
[n]
− (y) = λ

∫ √
g̃′6d

6y′G(y; y′)Φ
[n−1]
− (y′), (A.40)

where Φh(y) is the solution to the homogeneous Laplace equation, and Φ−(y) is sourced

by ϕ(y) via

Φ−(y) ≡
∫ √

g̃′6d
6y′G(y; y′)ϕ(y′). (A.41)

In the above, G is the Green’s function satisfying

∇̃2
yG(y; y′) =

δ(y − y′)√
g̃′6

. (A.42)

The expansion (A.38) can be truncated if λr2 < 1, in which case the leading order

term is from Φ
[0]
− . We will now calculate the Φ−(y) term for a D5-brane in the WRC.

We will find that the leading correction from the Ricci scalar is subdominant to ϕ(y)

in the small ρ limit, contributing a term of only at order ρ4, which is small.

Using our chosen p and q we get

ϕ(y) =
4

M2
p

4πu2pT5H−1/2 ≈ 180

u2
ρ2 (A.43)

λ =
4

M2
p

4π2l2sT5pq ≈ 4
M4

GUT

δM2
p

≈ 0.2

δu2
≈ 20

u2
(A.44)
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where we’ve used that MGUT = 4× 10−3Mp, and

M2
p =

Nu2

2(2π)4gsl4s
≈ 2× 108

u2
(A.45)

for our data. Then we have

λM2
p /4 ≈ 100M4

GUT. (A.46)

We note that in the potential there is the term

M2
p

4
ϕ(ρ) ≈M4

GUT880ρ2 (A.47)

coming from the non-cancellation of DBI and CS terms.

The expansion of Φ−(y) in (A.38) can be truncated if λr2 � 1. In our case, we

are interested in probing the r ∼ rmin ∼ u/50 region, in which case λr2 ≈ 20/2500 ≈
8× 10−3 � 1. Then the leading order term is Φ

[0]
− . We have chosen Φh, and so now we

need to calculate Φ−. To compute this we need to calculate the Green’s function and

integrate (A.41) to find the leading order small ρ behaviour of Φ−.

We can calculate the Green’s function using the eigenfunctions, YL(Z), of the Lapla-

cian on T 1,1. The delta function on the RC splits into a radial delta function and the

delta function on T 1,1,

δ(y − y′) = δ(r − r′)
i=5∏
i=1

δ(Zi − Z ′i). (A.48)

The delta function on the angular parts can be expanded in the YL(Z)∏i=5
i=1 δ(Zi − Z ′i)√

g̃5
=
∑
L

YL(Zi)Y
∗
L (Z ′i) (A.49)

which have the conventional normalisation∫
d5Zi

√
g̃5Y

∗
L (Zi)YL′(Zi) = δLL′ (A.50)

where

√
g̃5 ≡

√
g̃6√
g̃r

=
r3(r2 + 6u2)√

g̃r

sin θ1 sin θ2

108
=

sin θ1 sin θ2

108
. (A.51)

The YL are given by

YL(Zi) = Jl1,m1,R(θ1)Jl2,m2,R(θ2)ei(m1φ1+m2φ2+Rψ/2) (A.52)
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where JΥ
li,mi,R

(θi) = NΥ(sin θi)
mi

(
cot

(
θi
2

))R/2
×

2F1

(
−li +mi, 1 + li +mi; 1 +mi −R/2; sin2

(
θi
2

)) (A.53)

and JΩ
li,mi,R

(θi) = NΩ(sin θi)
R/2

(
cot

(
θi
2

))mi
×

2F1

(
−li +R/2, 1 + li +R/2; 1 +R/2−mi; sin2

(
θi
2

))
.

(A.54)

The Υ solution is regular for mi ≥ R/2, while Ω is regular for mi ≤ R/2. NΥ and NΩ

impose the normalisation (A.50).

In order to obtain single-valued regular functions, the charges must satisfy

• l1 & l2 both integers or both half-integers

• m1 ∈ {−l1, ..., l1} and m2 ∈ {−l2, ..., l2}

• R ∈ Z and
R

2
∈ {−l1, ..., l1} and

R

2
∈ {−l2, ..., l2}.

The Green’s function can be expanded in these YL, as

G(y; y′) =
∑
L

GL(r; r′)YL(Zi)Y
∗
L (Z ′i). (A.55)

Then the Φ−(y) term is

Φ−(y) =
∑
L

YL(Zi)

∫
d5Z ′i

sin θ′1 sin θ′2
108

Y ∗L (Z ′i)

∫ √
g̃r
′dr′GL(r; r′)ϕ(r′). (A.56)

We now prove that if ϕ(y) has no angular dependence, then Φ−(y) only has a contri-

bution from the singlet L = (0, 0, 0, 0, 0), due to the vanishing of the angular integral∫
d5Z ′i

sin θ′1 sin θ′2
108

Y ∗L (Z ′i) (A.57)

for other L.

To see this, note that because 0 ≤ ψ < 4π, we must have R = 0, for
∫ 4π

0 eiRψ/2 6= 0.

For R = 0, we must have that l1, l2 are both integers. Hence m1,m2 must both be

integers.

Similarly, in order for
∫ 2π

0 eimiφi 6= 0, for mi integers, we must have m1 = 0 = m2.

For mi = R = 0, the Υ and Ω solutions coincide, so we drop these labels. The form of

the θi dependence will simplify to the Legendre polynomials Pli

Jli,0,0 = N2F1

(
−li, 1 + li; 1; sin2

(
θi
2

))
(A.58)
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= NPli(cos θi). (A.59)

To see this, note that the Jacobi Polynomials P
(α,β)
n (x) are defined in terms of the

hypergeometric function by

P (α,β)
n (z) =

(α+ 1)n
n!

2F1

(
−n, 1 + n+ α+ β; 1 + α;

1

2
(1− z)

)
(A.60)

where (α + 1)n is the rising Pochhammer symbol. We have the special case n =

li, α = 0 = β, and z = cos θi, for which the Jacobi polynmials reduce to the Legendre

polynomials

P (0,0)
n (z) = Pn(z) (A.61)

and the Pochhammer symbol is (1)n = n!, so that

Jli,0,0 = NPli(cos θi). (A.62)

We then evaluate the integral using the orthogonality of Legendre polynomials, noting

that P0(z) = 1, and making the substitution z = cos θi∫ π

0
dθi sin θiPli(cos θi) =

∫ 1

−1
Pli(z)dz (A.63)

= δ0li (A.64)

which vanishes unless li = 0. Thus the only contribution to (A.57) is from the singlet

L = (0, 0, 0, 0, 0). This has a constant eigenfunction Y{0}(Zi) = α, where α is set by

the normalization (A.50), giving∫
d5Zi

sin θ1 sin θ2

108
|α|2 = 1 (A.65)

⇒ |α| =
√

27

16π3
. (A.66)

Now looking at (A.56), the only non-vanishing contribution comes from the L = {0}
term, which has angular part

Y{0}(Zi)

∫
d5Z ′i

sin θ′1 sin θ′2
108

Y ∗{0}(Z
′
i) = |α|2 ∗ |α|−2 = 1. (A.67)

We then just need to work out the radial integral

Φ−(y) =

∫ √
g̃r
′dr′G{0}(r; r

′)ϕ(r′). (A.68)
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= (3u)6

∫ √
g̃ρ
′dρ′G{0}(ρ; ρ′)ϕ(ρ′). (A.69)

For each GL(r; r′) in (A.55), we have the radial equation on the RC

1

r3(r2 + 6u2)
•r (r3(r2 + 9u2) •r GL)

−
[

6(l1(l1 + 1)−R2/4)

r2
+

6(l2(l2 + 1)−R2/4)

r2 + 6u2
+

9R2/4

κr2

]
GL =

δ(r − r′)
r3(r2 + 6u2)

(A.70)

which for dimensionless ρ becomes

1

ρ3(ρ2 + 2/3)
•ρ (ρ3(ρ2 + 1) •ρ GL)

−
[

6(l1(l1 + 1)−R2/4)

ρ2
+

6(l2(l2 + 1)−R2/4)

ρ2 + 2/3
+

9R2/4

κρ2

]
GL =

δ(ρ− x)

(3u)4ρ3(ρ2 + 2/3)
.

(A.71)

Here we’ve written ρ′ as x, for clarity of variables in the following. The good news

about (A.71) is that we can solve it exactly for L = {0} on the whole of the RC,

including the region of small ρ. For L = {0} we just have

•2ρG{0} +

(
5ρ+ 3ρ−1

ρ2 + 1

)
•ρ G{0} =

δ(ρ− x)

(3u)4
. (A.72)

The solution is

G{0}(ρ;x) =
1

(3u)4

−(2x2)−1 − log x+ 1
2 log(x2 + 1) if ρ ≤ x

−(2ρ2)−1 − log ρ + 1
2 log(ρ2 + 1) if ρ ≥ x.

(A.73)

Viewed as a function of ρ, the ρ ≤ x part of the solution is just a constant, fixed by

continuity of G{0}, while the ρ ≥ x part is the non-constant solution to the homogeneous

equation, regular at infinity.

Now we do the Green’s function integral for the L = {0} mode. The integral is

done in two pieces, the first is for x ≤ ρ∫ ρ

0
x5

(
x2 +

2

3

)(
− 1

2ρ2
+

1

2
log
(
ρ2 + 1

)
− log ρ

)
dx

= − 1

144
ρ4
(
9ρ2 + 8

) [
2ρ2 log ρ− ρ2 log

(
ρ2 + 1

)
+ 1
] (A.74)
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the second is for x ≥ ρ∫ 1/3

ρ
x5

(
x2 +

2

3

)(
− 1

2x2
+

1

2
log
(
x2 + 1

)
− log x

)
dx

=
1

23328

[
162 log

(
9
(
ρ2 + 1

))
+ 162

(
9ρ2 + 8

)
ρ6
(
2 log ρ− log

(
ρ2 + 1

))
+ 81

(
18ρ4 + 25ρ2 − 2

)
ρ2 − 9− 160 log(10)

]
.

(A.75)

Putting these together gives the exact result

Φ−(y) = (3u)6

∫ √
g̃ρ
′dxG{0}(ρ;x)

180

u2
x2 =

5

72

[
81
(
9ρ2 − 2

)
ρ2 + 162 log

(
9
(
ρ2 + 1

))
− 9− 160 log(10)

]
(A.76)

which, for small ρ has leading order behaviour

Φ−(y) ≈ −1.4905 + 45ρ4 +
15

4
ρ6 +O(ρ8). (A.77)

Using (A.46), we see that in the potential will appear the term 100M4
GUT 45ρ4 =

M4
GUT 4500ρ4, as in (4.81). This doesn’t contribute quantitatively in the small ρ limit.

The result that only the L = {0} mode contributes to Φ−(y) means that Φ−(y) =

Φ−(r) is purely radial. If the homogeneous solution Φh(y) is also purely radial, then

Φ
[0]
− (y) is also purely radial. The results of the above can then be applied so that we

would have all Φ
[n]
− (y) purely radial since the integrals over the YL would vanish for

L 6= {0}.
However, in our case, we have angular dependence in Φh(y) for the form of the

Natural Inflation potential, which would induce angular dependence in Φ
[n]
− (y) for higher

n.

A.3 Wrapped D5-branes and the b-Axion

Wrapped D5-branes can source a potential for the NS-NS axion, b, which arises from

the integral of the 2-form field B2 over a 2-cycle in a type IIB compactification. The

application of this to inflation was investigated in the original axion monodromy models,

for example in [200], where the couplings of the axion are generated just from the DBI

part of the D5-brane action. Our model of natural inflation involves a wrapped D5-

brane giving rise to a potential for this field, and so we should consider whether these

b-axions are relevant to inflation.

In our case, we can choose to turn on a worldvolume B2 flux of strength b along the
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wrapped 2-cycle so that its pullback has the following non-zero components P6[B2]θ1φ1 =
b
2 sin θ1. Then a potential for b enters via the function F in (4.42), with 2πα′q shifted

to 2πα′q + b. The same analysis leading to natural inflation with a Planckian decay

constant follows as long as we make the choice b<∼ 2πα′q, together with the upper bound

on q coming from (4.57). In contrast, models of axion monodromy inflation assume that

b� l initially, where l is the size of the wrapped S2. In this way the b-axion acquires

a linear potential effectively from expanding the F term leading to large field inflation.

In our model this would mean taking the 2πα′q + b term to be the dominant factor

inside F which is the opposite of what we have assumed. Ultimately this is a choice

of initial condition on the value of b. Our choice of initial condition is that b ≤ 2πα′q

so that 2πα′q + b is still sub-dominant to the warp factor term in F when the brane is

near the tip. As such b will not play a role in generating significant inflation and we

may ignore it.

Finally, in more recent axion monodromy models [175] the monodromy is induced

not by the DBI part of the wrapped D5-brane action, instead through background 3-

form fluxes coupling to the b-axion associated with B2 in the CS part of the action.

However, our model is constructed using the WRC in which SUSY preserving 3-form

fluxes are absent and so no such monodromy is induced either. Turning on such fluxes

may be of interest in discussing moduli stabilisation mechanisms within the WRC which

is something that we would like to investigate further.

The conclusion of this appendix is that although the inclusion of wrapped D5-branes

in our model could source potentials for b-axions, and hence complicate the inflationary

picture, our assumed initial conditions on the size of b ensure that it will not contribute

towards the inflationary dynamics. However, more complicated models could relax

these initial conditions.
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Appendix for the Squeezed Limit

of the Bispectrum

B.1 Reduction to single field case

We should check that our expression (7.49) for Bζ reduces to the Maldacena single field

squeezed limit result [36] in the case of one slowly rolling scalar field, given by

lim
k1�k2,k3

Bζ(k1, k2, k3) ≈ −(n(3)
s − 1)Pζ(k1)Pζ(k3) (B.1)

with ns − 1 = 2ηV − 6εV , and the superscript (3) denoting evaluation at time t3 when

k3 exits. Here εV ≡ 1
2(V ′/V )2 and ηV ≡ V ′′/V are the potential slow-roll parameters.

Thus we begin with a slowly rolling single field φ. In this case we have

Nφ = −H
φ̇

=
1√
2εV

,
Nφφ

N2
φ

= 2εV − ηV ,
d

dφ(3)
=

1

φ̇(3)

d

dt3
(B.2)

and the Γ matrix is just the number N
(1)
φ /N

(3)
φ . Then (7.49) simplifies to

lim
k1�k2,k3

Bζ(k1, k2, k3)

≈
(N

(1)
φ )2H(1)2

2k3
1

(N
(3)
φ )2H(3)2

2k3
3

(
−

˙φ(3)

H(3)

)
2

H(3)

(
1
˙φ(3)

dH(3)

dt3

)

+ 2
(N

(1)
φ )2H(1)2

2k3
1

(N
(3)
φ )2H(3)2

2k3
3

N
(3)
φφ

(N
(3)
φ )2

≈[2ε
(3)
V + 2(2ε

(3)
V − η

(3)
V )]Pζ(k1)Pζ(k3)

≈− (n(3)
s − 1)Pζ(k1)Pζ(k3)

(B.3)

as required.
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B.2 Recovering Seery & Lidsey result in near-equilateral

limit

A further important check is that the near-equilateral limit of our result for α, (6.19)

goes over to the result of Seery & Lidsey [43], given earlier in (7.47), valid when k1 is

small, but not so small as to change the exit times appreciably. That is, we want to

check that

lim
t1→t3

N
(3)
i N

(3)
j N

(3)
k α

(3)
ijk(k1, k2, k3) = lim

k1�k2,k3

4π4

k3
1k

3
2k

3
3

(
H(3)

2π

)4

N
(3)
i N

(3)
j N

(3)
k

×
∑

6 perms

φ̇
(3)
i

4H(3)
δjk

(
−3

k2
2k

2
3

kt
− k2

2k
2
3

k2
t

(k1 + 2k3) +
1

2
k2

1 − k1k
2
2

)
.

(B.4)

Beginning with the RHS, one can do the sum over all six permutations, then take

the slightly squeezed limit to get the RHS equal to

−N (3)
i N

(3)
j N

(3)
j

H(3)4

4k3
1k

3
3

dφ
(3)
i

dN
(B.5)

which is exactly the t1 → t3 limit of α
(3)
ijk in (6.19), in which Γ

(3,1)
ij → δij , contracted

with N
(3)
i N

(3)
j N

(3)
k .

B.3 Squeezed limits of graviton correlators

Three-point functions involving gravitons (tensors) are likely significantly harder to

detect observationally than those just involving scalars. Nonetheless they are interest-

ing to calculate with a view to observations in the more distant future, and from a

theoretical perspective.

Maldacena found squeezed limits of scalar-graviton and graviton-graviton three-

point functions in the case of a single scalar field [36]31. Here we use our soft-limit

argument to calculate these in the multiple field case.

First order graviton perturbations, denoted by γ, are gauge invariant in contrast to

scalar perturbations. They are defined as the transverse traceless perturbations of the

spatial metric, hIJ , such that

hIJ = a2(t) [(1 + 2ζ)δIJ + γIJ ] (B.6)

31Maldacena and Pimentel [333] found graviton-graviton correlators for gravity theories not restricted
to Einstein gravity, using a de Sitter approximation. Squeezed limits of correlation functions involving
gravitons in models of quasi single field inflation were considered in [334]
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where γII = 0 = ∂IγIJ . We can Fourier expand γ as

γIJ =

∫
d3k

(2π)3

∑
s=±

εsIJ(k)γsk(t)eik·x (B.7)

where s, r indices label the polarization of the graviton, and the polarization tensors

εsIJ(k) satisfy εsII(k) = 0 = kIε
s
IJ(k) and εsIJ(k)εrIJ(k) = 2δsr. The two-point function

of the graviton is given by

〈γsk1
γrk2
〉 = (2π)3δ(k1 + k2)P sr(1)

γ (k1) (B.8)

P sr(1)
γ (k1) = δsr

2H(1)2

2k3
1

. (B.9)

We now consider the squeezed limit of three-point correlation functions involving

gravitons. When the soft mode k1 is that of a ζ, there will be a correlation between ζk1

and two γ’s by way of a similar soft limit argument applied now to a ζγγ correlator,

giving the result

lim
k1�k2,k3

〈ζk1γ
s
k2
γrk3
〉 = (2π)3δ(k1 + k2 + k3)N

(3)
i Γ

(3,1)
in Γ

(3,1)
ml Σ

(1)
nl (k1)P sr(3)

γ,m (k3) (B.10)

which can be contrasted with the corresponding single field result given in [36]. In the

single field case, the result is proportional to the tilt of the graviton power spectrum,

providing another consistency relation between observables. Now in the multiple field

case, this consistency relation no longer holds, but instead the squeezed limit three-

point function is related to how the two-point γ correlator depends on the background

scalar fields φi.

When the soft mode is instead a graviton, we can refer to Maldacena’s argument that

when the ζk2 , ζk3 modes exit, the graviton with momentum k1 exited much earlier and is

already frozen, so that fluctuations of ζ at time t3 will be those in the deformed geometry

of the background γk1 mode. The main effect of the deformation of the background

geometry is to change the δIJk
I
3k

J
3 → δIJk

I
3k

J
3 −γIJkI3kJ3 inside the correlation function

of the two ζ’s (equivalently in the second order action for ζk3). Putting this into a soft

limit type argument gives

lim
k1�k2,k3

〈γsk1
ζk2ζk3〉 ≈ −(2π)3δ(k1 + k2 + k3)P sr(1)

γ (k1)εrIJ(k1)kI3k
J
3

d

dk2
3

Pζ(k3).

(B.11)

Similarly, the squeezed limit of the three-point correlator is exactly as given by Malda-
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cena [36]

lim
k1�k2,k3

〈γsk1
γrk2

γtk3
〉 ≈ −(2π)3δ(k1 + k2 + k3)P sq(1)

γ (k1)εqIJ(k1)kI3k
J
3

d

dk2
3

P rt(3)
γ (k3).

(B.12)

We highlight that the result (B.10) may lead to new shape dependence compared to

the single field results.

B.4 Reduction to Byrnes et al.

It is also important to check our expressions match those which have previously ap-

peared in the literature in the near-equilateral, midly-squeezed configuration, which is

the overlapping regime of validity. A result for the squeezed limit of the bispectrum

was given by Byrnes et al. in Eq. (96) of Ref [45]

Bζ(k1, k2, k3) =

N
(1)
i N

(1)
j N

(3)
lm

[
δil +

(
2c+ log k3

k1

)
uil

] [
δjm +

(
2c+ log k3

k2

)
ujm

]
N

(1)
r N

(1)
s N

(3)
t N

(3)
z (δrs + 2curs) (δtz + 2cutz)


× Pζ(k1)Pζ(k2) + 2 perms

(B.13)

where c = 2− log 2−γ, with γ the Euler-Masheroni constant, and uij is given by (6.33),

and since uij is of order slow-roll, it can be evaluated at any time. Their result is valid

for small log(k3/k1)uij with the intrinsic contribution from the three-point function of

field perturbations neglected. It was derived by considering the two-point correlation

at unequal times, calculated using the expression

δφ
(3)
i,k =

[
δij + log

k3

k1
uij

]
δφ

(1)
j,k (B.14)

which is valid for small log(k3/k1)uij . However, for a large squeezing, log(k3/k1)uij

may not be small, even though uij is of order slow-roll, and one will instead need the

full Γ expression (6.6) for the evolution of the field perturbations. The Γ matrix can

be written formally as a time-ordered exponential [38, 55,56,298–300]

Γ
(3,1)
ij = T exp

[∫ N3

N1

uij(N)dN

]
(B.15)
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where N1 is the number of e-folds corresponding to time t1 and similarly for N3. Note

that in the limit of small log(k3/k1)uij , we have, at leading order in log(k3/k1)uij

Γ
(3,1)
ij ≈ δij + log

(
k3

k1

)
u

(1)
ij + ... (B.16)

As discussed in Footnote 2, these authors used a next-order in slow-roll expression for

Σ,

Σ
(∗)
ij (k1) ≈ H(∗)2

2k3
1

(δij + 2cuij). (B.17)

Taking our expression for the squeezed limit of the bispectrum (6.20), and substituting

the RHS of (B.16) for Γ, and replacing H(∗)2
δij/2k

3
1 with the RHS of (B.17), we recover

(B.13).

The reason we didn’t need to use (B.17) in the main part of this work was because

we were throughout working to leading order in slow-roll, rather than next to leading

order in slow-roll. The only time we needed to consider slow-roll terms, such as uij , are

when they appear multiplied by log(k3/k1), which can be as large as O(20), in which

case | log(k3/k1)uij | ∼ 1. Note that the expansion in Eq (B.16) cannot be truncated

for | log(k3/k1)uij | ∼ 1. In the highly squeezed limit this is why the full expression for

Γ given in Eq (6.5) needs to be used instead of Eq (B.16), even though we can safely

neglect the slow-roll correction to the power spectrum in Eq (B.17).

B.5 Reduction to Dias et al.

Dias et al. [293] used a next-to-leading order expression for the bispectrum [42]

lim
k1�k2,k3

Bζ(k1, k2, k3) ≈ 2NijNlNm [Σil(k1)Σjm(k2) + Σil(k2)Σjm(k3) + Σil(k3)Σjm(k1)]

(B.18)

to calculate the spectral index of the halo bias as

nδb ≡
d logBζ
d log k1

= −2
NiNjNkMimα

LO
mjk +NijNkNl(MimΣmk +MkmΣim)Σjl

NnNpNqαLO
npq + 2NnNpNqrΣnqΣpr

+ 2
NiNjMij

NlNl

(B.19)

where the right hand sides of both expressions are evaluated at the time tt when kt ≡
k1 + k2 + k3 crosses the horizon, and where

αLO
ijk = −H4 φ̇i

H
δjk = −H4V,i

V
δjk (B.20)
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Σij(ka) = H(tt)2
[
δij + 2rij − 2Mij log

(
2ka
kt

)]
(B.21)

with Mij ≡ εδij + uij (B.22)

and rij ≡ εδij(1− γ) + uij(2− γ) (B.23)

where uij ≡
V,iV,j
V 2

− V,ij
V

(B.24)

in which all quantities on the right hand side are again evaluated at tt, and γ is the

Euler-Masheroni constant. These results can be trusted for a mild hierarchy of scales,

where | log(k1/k3)| is of order a few. We now check that our expression for nδb, (6.34),

can recover the Dias et al. result, (B.19), in the limit where the exit times are very

close. To do so we begin with the expressions

V
(1)
,l

V (1)
Γ

(3,1)
ik,l = −

φ̇
(1)
l

H(1)
Γ

(3,1)
ik,l = − 1

H(1)

d

dt1
Γ

(3,1)
ik = − d

d log k1
Γ

(3,1)
ik . (B.25)

Now assuming we can swap the limit of differentiation with respect to k1 and the limit

of taking t1 → t3, and using (B.16) we get

lim
t1→t3

V (1)
,l

V (1)
Γ

(3,1)
ik,l

 = − d

d log k1

(
δik + log

(
k3

k1

)
u

(1)
ik + ...

)
= u

(1)
ik . (B.26)

Substituting this into nδb of (6.34) and setting Γ
(3,1)
ij → δij we get

lim
t1→t3

nδb =− 2
N

(3)
i N

(3)
q (N

(3)
q V

(3)
,j + 6N

(3)
qj H

(3)2
)M

(1)
ij

N
(3)
m N

(3)
r (N

(3)
r V

(3)
,m + 6N

(3)
rmH(3)2

)
+ 2

N
(3)
i N

(3)
j M

(1)
ij

N
(3)
m N

(3)
m

(B.27)

which is the of the same form as (B.19) when (B.20) and (B.21) are substituted in.

Note that in their expression everything on the RHS is instead evaluated at exit time

of kt = k1 +k2 +k3, rather than t3, but in the limit where the exit times are very close,

this won’t affect the result significantly, and we recover their result.

B.6 Tilt of reduced bispectrum in the squeezed limit

As discussed in §6.3.2 one can study the tilts of the reduced bispectrum, fNL, in the

squeezed configuration with respect to any combination of the k-modes which it in-

volves. In particular, one can calculate how fNL of (6.22) varies with respect to k1 ≈ k2

or k3, or some combination of them. The dependence can be parametrized by

nXfNL
≡ d log |fNL|

d logX
(B.28)
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for X = k1, k3. In §6.3.2 we found nk1fNL
= nδb, where nδb was calculated in §6.3.1 in

(6.34). To find nk3fNL
we write (6.22) in a form where the second square bracket contains

all the k3 dependence

lim
k1�k2,k3

6

5
fNL(k1, k2, k3) ≈

[
1

N
(1)
q N

(1)
q

]L(3,1)
ij

N (3)
i [logH(3)],j +

N
(3)
i N

(3)
jk N

(3)
k

N
(3)
p N

(3)
p


(B.29)

so that

nk3fNL
≈ 1

fNL

P (3,1)
ij,3

N (3)
i [logH(3)],j +

N
(3)
i N

(3)
jk N

(3)
k

N
(3)
p N

(3)
p

+ L
(3,1)
ij Q

(3)
ij

 (B.30)

where Q
(3)
ij ≡

1

2
N

(3)
i u

(3)
jk

V,k3

V (3)
− 1

2
N

(3)
k u

(3)
ik

V,j

V (3)
−
N

(3)
i N

(3)
jk N

(3)
k N

(3)
m N

(3)
n u

(3)
mn

(N
(3)
p N

(3)
p )2

− 1

N
(3)
p N

(3)
p

N (3)
i N

(3)
k N

(3)
jkl

V
(3)
,l

V (3)
+N

(3)
k N

(3)
l N

(3)
jk u

(3)
il +N

(3)
i N

(3)
l N

(3)
jk u

(3)
kl


(B.31)

and P
(3,1)
ij,3 ≡

dL
(3,1)
ij

d log k3
= −

V
(3)
,l

V (3)
Γ

(1,3)
ml

(
Γ

(3,1)
ik,mΓ

(3,1)
jk + Γ

(3,1)
ik Γ

(3,1)
jk,m

)
. (B.32)

Note that we have neglected the intrinsic contribution in Eq. (6.22) for simplicity.

To compare with observations, one might wish to use the variables in [335], given

by k̃, α̃, β̃, defined as

k̃ =
1

2
k1 +

1

2
k2 +

1

2
k3, α̃ =

k2 − k3

k̃
, β̃ =

k̃ − k1

k̃
(B.33)

which in the squeezed limit are related to k1, k3 by

k1 = k̃
1− β̃
3− β̃

, k3 =
k̃

3− β̃
(B.34)

with α̃ ≈ 0. We can use the chain rule to calculate

nk̃fNL
=
∂ log fNL

∂ log k̃
=
∂ log fNL

∂ log k1

∂ log k1

∂ log k̃
+
∂ log fNL

∂ log k3

∂ log k3

∂ log k̃
= nk1fNL

+ nk3fNL
(B.35)

nβ̃fNL
=
∂ log fNL

∂ log β̃
=
∂ log fNL

∂ log k1

∂ log k1

∂ log β̃
+
∂ log fNL

∂ log k3

∂ log k3

∂ log β̃
=

−2β̃nk1fNL

(1− β̃)(3− β̃)
+

β̃nk3fNL

(3− β̃)
.

(B.36)

Note that in the squeezed limit β̃ ≈ 1, and so if we use our expression for the squeezed
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limit of fNL in (6.22), we shouldn’t vary β̃ significantly away from 1.
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Appendix C

Appendix for the Separate

Universe Approach to Soft Limits

C.1 The background wave method

In this appendix we review the background wave method as used previously for models

of single-field inflation (see e.g. [36, 83, 84, 271]) and then show how this generalises to

models of multi-field inflation. In summary, for single-field inflation, the background

wave method allows the effect of a soft mode to be traded for a change of spatial

coordinates. In multi-field inflation however, one can’t trade for a change in spatial

coordinates, but instead one can trade for a change in field-space background values.

We begin with how soft ζ modes can be set to zero, if one performs a suitable

change of spatial coordinates. Since ζ appears in the perturbed spatial metric as

gij(t,x)dxidxj = a2(t)e2ζ(t,x)δijdx
idxj , a soft mode ζs(t,x) can be recast as a change

in coordinates, i.e. one can set ζs(t,x) 7→ 0 as long as one performs the coordinate

transformation [83]

x 7→ x′ ≡ eζs(t,x)x (C.1)

everywhere. This statement is true of both single- and muti-field inflation. However,

its utility for application to soft limits depends on whether one works with a single- or

multi-field inflation model.

For single-field inflation, the method runs as follows: in single-field inflation, one

assumes that the hard ζ mode32 in the presence of soft modes, denoted ζh(x)
∣∣∣
s
, feels

the effect of the soft modes only through dependence on the soft ζ modes

ζh(x)
∣∣∣
s

= ζh(x)
∣∣∣
ζs
. (C.2)

32or correlation functions of hard ζ modes
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Note that equation Eq. (C.2) holds only for single-field inflation since in this case there

are no isocurvature modes, χα, and hence no dependence on soft isocurvature modes,

χs
α. The relation Eq. (C.1) means that ζh(x)

∣∣∣
ζs

= ζh(x′)
∣∣∣
0
, where the subscript zero

indicates the value the hard modes take in the absence of any soft modes. This can

then be inserted into Eq. (C.2) to give, for single-field inflation,

ζh(x)
∣∣∣
s

= ζh(x′)
∣∣∣
0
. (C.3)

The interpretation of this is that for single-field models, the effect of soft modes on the

hard ζ can be accounted for by just rescaling the spatial coordinates and evaluating

the hard mode in the absence of any soft modes. One can then Taylor expand the RHS

of Eq. (C.3), for small ζs, to get (see e.g. [83, 84])

ζh(x′)
∣∣∣
0

= ζh(x)
∣∣∣
0

+ ζs x · ∇ζh(x)
∣∣∣
0

+ · · · (C.4)

which holds for single-field models. This can then be inserted into soft correlation

functions to derive single-field consistency relations.

For multi-field models, Eq. (C.1) still holds, but Eq. (C.2) does not. This means

one doesn’t have Eq. (C.3) or Eq. (C.4). Instead of Eq. (C.2), for multi-field models

we assume

ζh(x)
∣∣∣
s

= ζh(x)
∣∣∣
ζs,χs

α

(C.5)

where the χs
α are soft isocurvature modes. Equivalently, since ζ and χα can be recast

in terms of fluctuations of the multiple scalar fields, we have

ζh(x)
∣∣∣
s

= ζh(x)
∣∣∣
δφsA

. (C.6)

The interpretation of Eq. (C.6) is that for multi-field inflation, the effect of soft modes

on the hard ζ is not just a local rescaling of coordinates (which was the single-field

case), but is instead a more general transformation in the background values of the

multiple scalar field values.

When inserted into soft limits of correlation functions, Eq. (C.6) implies that we

are assuming that the main contribution to correlations between hard and soft modes

comes from how the soft modes, which exit the horizon at much earlier times, alter

the background cosmology in which hard modes exit. This assumption can be used for

any set of scales, but becomes accurate only when the hierarchy is large. We then can

Taylor expand the RHS of Eq. (C.6) in powers of δφs
A around the value it would have

taken in the absence of any soft scale modes ζh(x)
∣∣∣
0
≡ ζh(x) to get Eq. (7.10).
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C.2 Reduction to Single Field Result

We would like to recover the single-field result (5) of [268] (which agrees with the results

of [269]) for the double-soft kite limit, with their N set to N = 2

lim
k1≈k2�k3≈k4

Tζ(k1,k2,k3,k4) = Bζ(k1, k2, k12)δDPζ(k3) + Pζ(k1)Pζ(k2)δ2
DPζ(k3)

(C.7)

where δD = −3− d

d log k3
. (C.8)

In the single field case, our expression Eq. (7.29) reduces to

lim
k1≈k2�k3≈k4

Tζ(k1,k2,k3,k4)

=N2
φPζ(k3),φαφφφ(k1, k2, k12) +N2

φPζ(k3),φφΣφφ(k1)Σφφ(k2)

+NφNφφPζ(k3),φΣφφ(k1)Σφφ(k12) +NφNφφPζ(k3),φΣφφ(k2)Σφφ(k12).

(C.9)

We will use the standard single-field slow-roll expressions Nφ = −H/φ̇ = 1/
√

2εV and

Nφφ = 1− ηV /(2εV ) where εV ≡ 1
2 (V ′/V )2 and ηV ≡ V ′′/V are the potential slow roll

parameters for slow-roll potential V . We will also use Σ(k3)φφ = H2/2k3
3. Note that

the scalar spectral index is

ns − 1 = 2ηV − 6εV = −
(1 + 2Nφφ)

N2
φ

(C.10)

and in terms of the dilatation operator we have

ns − 1 = − 1

Pζ(k3)
δDPζ(k3). (C.11)

The scalar tilt is given by

αs ≡
d log(ns − 1)

d log k
= −

(ns − 1),φ
Nφ(ns − 1)

(C.12)

where we’ve used k = aH at horizon exit and Nφ = −H/φ̇.

We would like to have expressions for Pζ(k3),φ and Pζ(k3),φφ. Firstly

Pζ(k3),φ =

(
N2
φ

H2

2k3
3

)
,φ

=
Pζ(k3)

Nφ
(1 + 2Nφφ) = −Nφ(ns − 1)Pζ(k3) = NφδDPζ(k3)

(C.13)

where in the second equality we have used the slow-roll result
(
H2
)
,φ

= H2/Nφ, in the

third equality we have used Eq. (C.10) and in the final equality we used Eq. (C.11).
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Next, the second derivative is

Pζ(k3),φφ = (−Nφ(ns − 1)Pζ(k3)),φ (C.14)

= −Nφφ(ns − 1)Pζ(k3) +Nφ [αs +Nφ(ns − 1)] (ns − 1)Pζ(k3) (C.15)

= NφφδDPζ(k3) +Nφ

[
−3− d

d log k3

]
(−(ns − 1)Pζ(k3)) (C.16)

= NφφδDPζ(k3) +Nφδ
2
DPζ(k3) (C.17)

where we’ve made repeated use of Eq. (C.13), together with Eq. (C.12) in the second

line. We can now substitute Eq. (C.13) and Eq. (C.17) into Eq. (C.9) and factor out

δDPζ and δ2
DPζ terms to give

lim
k1≈k2�k3≈k4

Tζ(k1,k2,k3,k4)

=
{
N3
φαφφφ(k1, k2, k12) +N2

φNφφ [Σφφ(k1)Σφφ(k2) + (k1 → k2 → k12)]
}
δDPζ(k3)

+N4
φΣφφ(k1)Σφφ(k2)δ2

DPζ(k3)

(C.18)

=Bζ(k1, k2, k12)δDPζ(k3) + Pζ(k1)Pζ(k2)δ2
DPζ(k3) (C.19)

which is the desired single field result.

C.3 Γ Diagrams

In §7.3 we made the Γ expansion Eq. (7.42) expressing perturbation on flat hypersur-

faces at some later time in terms of the perturbations on an earlier flat hypersurface.

Then in §7.3.2 we inserted this expansion into the late time field-space two- and three-

point functions. In this appendix, we consider the more general case of the field-space

s-point function F
(n)
A1···As(p1, ...,ps), defined in Eq. (7.5), writing it in terms of field-

space correlation functions whose evaluation time matches the exit time of the soft

modes. We must expand up to (s − 1)-th order to be consistent. Wick contractions

then occur between the terms. Again, we can organise the result in terms of diagrams,

which we call the Γ diagrams, which are analogous to both the δN Diagrams and the

Soft Limit Diagrams. As before, we focus on tree-level, and keep only leading order

terms in the gradient expansion.

Γ Diagram Rules:

1. Draw s-external dashed lines, labelled with incoming momenta pa and field index

Aa for a = 1, ..., s. Draw a cross vertex at the end of each dashed line.
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2. Connect the cross vertices by drawing a connected tree diagram with wavy lines.

Each wavy line must connect on one end to a cross vertex and on the other end

to a square vertex. At a cross vertex, (possibly multiple) wavy lines can connect

to a dashed line. At a square vertex wavy lines connect to other wavy lines.

3. Label each wavy line with a distinct field index B1, B2, ....

4. Ensure momentum conservation at every vertex, which determines the momentum

of each wavy line.

5. The two vertex types are assigned the following factors

(a) Assign a factor Γ
(n,1...1)
Aa,B1···Bm to each cross vertex with one external dashed

line with index Aa and m wavy lines with field indices B1, · · ·, Bm, where

1 ≤ m ≤ s− 1.

(b) Assign a factor F
(1)
B1···Br(q1, ...,qr) to each square vertex with no dashed

external lines and r wavy lines with incoming momenta q1, ...,qs and field

indices B1 · · ·Br, where 2 ≤ r ≤ s.

6. Each diagram is associated with the mathematical expression obtained by multi-

plying together all vertex factors. Repeat the above process from stage 2 onwards

to generate all distinct connected tree diagrams. F
(n)
A1···As(p1, ...,ps) is then ob-

tained by summing over all these diagrams.

As an example, in Fig. 16, we show the Γ diagrams for the late-time field-space

three-point function, corresponding to the expression Eq. (7.46) [322], which we repeat

here for convenience

α
(n)
ABC(p1, p2, p3) =Γ

(n,1)
A,D Γ

(n,1)
B,E Γ

(n,1)
C,F α

(1)
DEF (p1, p2, p3)

+
[
Γ

(n,11)
A,DEΓ

(n,1)
B,F Γ

(n,1)
C,G Σ

(1)
DF (p2)Σ

(1)
EG(p3) + (A, p1 → B, p2 → C, p3)

]
.

(C.20)
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Figure 16: Distinct tree-level connected Γ Diagrams for the field space three-point
function
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