Gravity as the Square of Gauge Theory

Michael Kiermaier

Princeton University
Amplitudes 2010, Queen Mary University of London
based mainly on arXiv:1004.0693 with Zvi Bern, Tristan Dennen, Yu-tin Huang

How to Square Gauge Theory?

KLT relations

- 4-point:

$$
\mathcal{M}_{4}(1,2,3,4)=-i s_{12} A_{4}(1,2,3,4) \tilde{A}_{4}(1,2,4,3)
$$

- 5-point:

$$
\begin{aligned}
\mathcal{M}_{5}(1,2,3,4,5)= & i s_{12} s_{34} A_{5}(1,2,3,4,5) \tilde{A}_{5}(2,1,4,3,5) \\
& +i s_{13} s_{24} A_{5}(1,3,2,4,5) \tilde{A}_{5}(3,1,4,2,5)
\end{aligned}
$$

- n-point?

How to Square Gauge Theory?

KLT relations, n-point

$$
\begin{aligned}
& \mathcal{M}_{n}(1,2, \ldots, n)= i(-)^{n+1}\left[A_{n}(1,2, \ldots, n) \sum_{\text {perms }} f\left(i_{1}, \ldots, i_{j}\right) \bar{f}\left(l_{1}, \ldots, l_{j}\right)\right. \\
&\left.\tilde{A}_{n}\left(i_{1}, \ldots, i_{j}, 1, n-1, \iota_{1}, \ldots, l_{j}, n\right)\right] \\
&+\mathcal{P}(2, \ldots, n-2) .
\end{aligned}
$$

with

$$
\left\{i_{1}, \ldots, i_{j}\right\} \in \mathcal{P}(2, \ldots,\lfloor n / 2\rfloor), \quad\left\{1_{1}, \ldots, l_{j^{\prime}}\right\} \in \mathcal{P}(\lfloor n / 2\rfloor+1, \ldots, n-2) .
$$

and

$$
f\left(i_{1}, \ldots, i_{j}\right)=s_{1, i_{j}} \prod_{m=1}^{j-1}\left(s_{1, i_{m}}+\sum_{k=m+1}^{j} g\left(i_{m}, i_{k}\right)\right)
$$

where $g(i, j)=s_{i j}$ for $i>j$ and $g(i, j)=0$ otherwise.

How to Square Gauge Theory?

Problem

KLT relations in this form express the unordered gravity amplitude in terms of color-ordered gauge theory amplitudes!

Possible Solutions

- Use "ordered" gravity amplitudes \Rightarrow Drummond, Spradlin, Volovich, Wen [arXiv:0901.2363]
- Use full unordered gauge-theory amplitude \Rightarrow Bern, Carrasco, Johansson [arXiv:0805.3993]

How to Square Gauge Theory?

BCJ duality

The gauge theory amplitude can be written as

$$
\mathcal{A}_{n}=\sum_{\text {diags. } i} \frac{n_{i} c_{i}}{\prod s_{\alpha_{i}}}
$$

- diagrams i only contain cubic vertices:

- numerators n_{i} satisfy Jacobi-like relations ("BCJ duality"):

$$
c_{i}+c_{j}+c_{k}=0 \quad \Rightarrow \quad n_{i}+n_{j}+n_{k}=0
$$

How to Square Gauge Theory?

conjectured BCJ squaring relations

Gauge theory amplitudes

$$
\mathcal{A}_{n}=\sum_{\text {diags } . i} \frac{n_{i} c_{i}}{\prod s_{\alpha_{i}}}, \quad \tilde{\mathcal{A}}_{n}=\sum_{\text {diags. } i} \frac{\tilde{n}_{i} c_{i}}{\prod s_{\alpha_{i}}}
$$

with numerators satisfying Jacobi-like relations:

$$
c_{i}+c_{j}+c_{k}=0 \quad \Rightarrow \quad n_{i}+n_{j}+n_{k}=0, \quad \tilde{n}_{i}+\tilde{n}_{j}+\tilde{n}_{k}=0
$$

Gravity amplitude:

$$
-i \mathcal{M}_{n}=\sum_{\text {diags } . i} \frac{n_{i} \tilde{n}_{i}}{\prod s_{\alpha_{i}}}
$$

- Why do these squaring relations hold?
- What are the implications?

Important related work

Stringy approach/generalizations of BCJ (see

- Bjerrum-Bohr, Damgaard, Vanhove [arXiv:0907.1425]
- Tye, Zhang [arXiv:1003.1732]
- Bjerrum-Bohr, Vanhove [arXiv:1003.2396]
- Bjerrum-Bohr, Damgaard, Sondergaard, Vanhove [arXiv:1003.2403]

Applications of Squaring Relations at loop level (see

- Bern, Carrasco, Johansson [arXiv:1004.0476]
- Vanhove [arXiv:1004.1392]
(1) Generalized Gauged Invariance
(2) Field Theory Derivation of the Squaring Relations
(3) The Squaring Relations from a Lagrangian Viewpoint

4 Implications \& Applications

Generalized Gauge Invariance

Generalized Gauge Transformations

Gauge theory amplitude

$$
\mathcal{A}_{n}=\sum_{\text {diags. } i} \frac{n_{i} c_{i}}{\prod s_{\alpha_{i}}}
$$

is invariant under

$$
n_{i} \quad \rightarrow \quad n_{i}+\Delta_{i}
$$

with

$$
\sum_{\text {diags. } i} \frac{\Delta_{i} c_{i}}{\prod s_{\alpha_{i}}}=0
$$

- Δ_{i} "move around" contact terms, can be local or non-local
- Preserves Jacobi-like relations if

$$
\Delta_{i}+\Delta_{j}+\Delta_{k}=0
$$

Generalized Gauge Invariance

The Squaring Relations

$$
n_{i}+n_{j}+n_{k}=0, \quad \tilde{n}_{i}+\tilde{n}_{j}+\tilde{n}_{k}=0 \quad \Rightarrow \quad-i \mathcal{M}_{n}=\sum_{\text {diags. } i} \frac{n_{i} \tilde{n}_{i}}{\prod s_{\alpha_{i}}}
$$

Generalized Gauge Transformation of the Squaring Relations

$$
n_{i} \quad \rightarrow \quad n_{i}+\Delta_{i} \quad \text { with } \sum_{\text {diags. } i} \frac{\Delta_{i} c_{i}}{\prod s_{\alpha_{i}}}=0, \quad \Delta_{i}+\Delta_{j}+\Delta_{k}=0
$$

Gravity amplitude transforms as

$$
-i \mathcal{M}_{n} \quad \rightarrow \quad-i \mathcal{M}_{n}+\sum_{\text {diags. } i} \frac{\Delta_{i} \tilde{n}_{i}}{\prod s_{\alpha_{i}}} .
$$

Generalized Gauge Invariance

The Squaring Relations

$$
n_{i}+n_{j}+n_{k}=0, \quad \tilde{n}_{i}+\tilde{n}_{j}+\tilde{n}_{k}=0 \quad \Rightarrow \quad-i \mathcal{M}_{n}=\sum_{\text {diags. } i} \frac{n_{i} \tilde{n}_{i}}{\prod s_{\alpha_{i}}}
$$

Consistency Requirement

If $\Delta_{i}, \tilde{n}_{i}$ satisfy Jacobi-like relations:

$$
\sum_{\text {diags. } i} \frac{\Delta_{i} c_{i}}{\prod s_{\alpha_{i}}}=0 \quad \Rightarrow \quad \sum_{\text {diags. } i} \frac{\Delta_{i} \tilde{n}_{i}}{\prod s_{\alpha_{i}}}=0 .
$$

Origin: c_{i} are color factors any gauge group
\Rightarrow identity only relies on algebraic properties of c_{i}
\Rightarrow must work for $c_{i} \rightarrow \tilde{n}_{i}$
$\Rightarrow \Delta_{i}$ actually don't need to satisfy Jacobi-like relations!

Deriving the Squaring Relations

$$
n_{i}+n_{j}+n_{k}=0, \quad \tilde{n}_{i}+\tilde{n}_{j}+\tilde{n}_{k}=0 \quad \Rightarrow \quad-i \mathcal{M}_{n}=\sum_{\text {diags. } i} \frac{n_{i} \tilde{n}_{i}}{\prod s_{\alpha_{i}}}
$$

- Squaring relations trivial at 3-point:

$$
-i \mathcal{M}_{3}=A_{3} \times \tilde{A}_{3} .
$$

- Proceed inductively, using on-shell recursion relations

$$
\mathcal{A}_{n}=\sum_{\alpha} \hat{\mathcal{A}}_{L} \frac{i}{s_{\alpha}} \hat{\mathcal{A}}_{R}, \quad \mathcal{M}_{n}=\sum_{\alpha} \hat{\mathcal{M}}_{L} \frac{i}{s_{\alpha}} \hat{\mathcal{M}}_{R}
$$

Deriving the Squaring Relations

$$
n_{i}+n_{j}+n_{k}=0, \quad \tilde{n}_{i}+\tilde{n}_{j}+\tilde{n}_{k}=0 \quad \Rightarrow \quad-i \mathcal{M}_{n}=\sum_{\text {diags. } i} \frac{n_{i} \tilde{n}_{i}}{\prod s_{\alpha_{i}}}
$$

Assumptions

- A local choice of n_{i} exists such that

$$
\mathcal{A}_{n}=\sum_{\text {diags. } i} \frac{n_{i} c_{i}}{\prod s_{\alpha_{i}}}, \quad n_{i}+n_{j}+n_{k}=0
$$

- Complex on-shell deformations of momenta

$$
p_{a} \rightarrow \hat{p}_{a}(z)=p_{a}+z q_{a}, \quad p_{a} \cdot q_{a}=q_{a}^{2}=0
$$

exist such that

$$
\hat{\mathcal{M}}_{n}(z) \rightarrow 0, \quad \hat{\mathcal{A}}_{n}(z) \rightarrow 0, \quad \hat{\tilde{\mathcal{A}}}_{n}(z) \rightarrow 0 \quad \text { as } \quad z \rightarrow \infty
$$

(BCFW particularly suitable)

Deriving the Squaring Relations

$$
n_{i}+n_{j}+n_{k}=0, \quad \tilde{n}_{i}+\tilde{n}_{j}+\tilde{n}_{k}=0 \quad \Rightarrow \quad-i \mathcal{M}_{n}=\sum_{\text {diags. } i} \frac{n_{i} \tilde{n}_{i}}{\prod s_{\alpha_{i}}}
$$

Expand amplitude in terms of residues:

$$
\mathcal{A}_{n}=\sum_{\alpha} \frac{\hat{\mathcal{A}}_{n}^{\alpha}}{s_{\alpha}} .
$$

Residues are well-defined, gauge-invariant. Two ways to compute them:

- directly from amplitude:

$$
\hat{\mathcal{A}}_{n}^{\alpha}=\sum_{\alpha \text {-diags. } i} \frac{\hat{n}_{i}\left(z_{\alpha}\right) c_{i}}{\prod \hat{S}_{\alpha_{i}}\left(z_{\alpha}\right)}=\sum
$$

- from the recursion relation:

$$
\hat{\mathcal{A}}_{n}^{\alpha}=\sum_{\alpha \text {-diags. }} \frac{i \hat{n}_{L, i}^{\alpha} \hat{n}_{R, i}^{\alpha} c_{i}}{\prod \hat{s}_{\alpha_{i}}\left(z_{\alpha}\right)}=\sum
$$

Deriving the Squaring Relations

$$
n_{i}+n_{j}+n_{k}=0, \quad \tilde{n}_{i}+\tilde{n}_{j}+\tilde{n}_{k}=0 \quad \Rightarrow \quad-i \mathcal{M}_{n}=\sum_{\text {diags. } i} \frac{n_{i} \tilde{n}_{i}}{\prod s_{\alpha_{i}}}
$$

Representations A_{n}^{α} can differ by a generalized gauge transformation:

$$
\hat{n}_{i}\left(z_{\alpha}\right)=i \hat{n}_{L, i}^{\alpha} \hat{n}_{R, i}^{\alpha}+\Delta_{i}^{\alpha} \quad \sum_{\alpha \text {-diags. } i} \frac{\Delta_{i}^{\alpha} c_{i}}{\prod \hat{s}_{\alpha_{i}}\left(z_{\alpha}\right)}=0
$$

Generalized gauge transformation preserves Jacobi-like identities:

$$
\Delta_{i}^{\alpha}+\Delta_{j}^{\alpha}+\Delta_{k}^{\alpha}=0
$$

Deriving the Squaring Relations

$$
n_{i}+n_{j}+n_{k}=0, \quad \tilde{n}_{i}+\tilde{n}_{j}+\tilde{n}_{k}=0 \quad \Rightarrow \quad-i \mathcal{M}_{n}=\sum_{\text {diags } . i} \frac{n_{i} \tilde{n}_{i}}{\prod s_{\alpha_{i}}}
$$

Expand gravity amplitude using recursion relation:

$$
\mathcal{M}=\sum_{\alpha} \frac{i}{s_{\alpha}} \hat{\mathcal{M}}_{L}\left(z_{\alpha}\right) \hat{\mathcal{M}}_{R}\left(z_{\alpha}\right)=\sum_{\alpha} \frac{i}{s_{\alpha}} \sum_{\alpha \text {-diags. } i} \frac{\left[i \hat{n}_{L, i}^{\alpha} \hat{\tilde{n}}_{L, i}^{\alpha}\right]\left[i \hat{n}_{R, i}^{\alpha} \hat{\tilde{n}}_{R, i}^{\alpha}\right]}{\prod \hat{s}_{\alpha_{i}}\left(z_{\alpha}\right)} .
$$

Recalling $\hat{n}_{i}\left(z_{\alpha}\right)=i \hat{n}_{L, i}^{\alpha} \hat{n}_{R, i}^{\alpha}+\Delta_{i}^{\alpha}$, we have
$\mathcal{M}_{n}=\sum_{\alpha} \frac{i}{s_{\alpha}} \sum_{\alpha \text {-diags. } i}\left[\frac{\hat{n}_{i}\left(z_{\alpha}\right) \hat{\tilde{n}}_{i}\left(z_{\alpha}\right)}{\prod \hat{s}_{\alpha_{i}}\left(z_{\alpha}\right)}-\frac{\Delta_{i}^{\alpha} \hat{\tilde{n}}_{i}\left(z_{\alpha}\right)+\tilde{\Delta}_{i}^{\alpha} \hat{n}_{i}\left(z_{\alpha}\right)}{\prod \hat{s}_{\alpha_{i}}\left(z_{\alpha}\right)}+\frac{\Delta_{i}^{\alpha} \tilde{\Delta}_{i}^{\alpha}}{\prod \hat{s}_{\alpha_{i}}\left(z_{\alpha}\right)}\right]$.

Deriving the Squaring Relations

$$
n_{i}+n_{j}+n_{k}=0, \quad \tilde{n}_{i}+\tilde{n}_{j}+\tilde{n}_{k}=0 \quad \Rightarrow \quad-i \mathcal{M}_{n}=\sum_{\text {diags. } i} \frac{n_{i} \tilde{n}_{i}}{\prod s_{\alpha_{i}}}
$$

Gravity

$$
-i \mathcal{M}_{n}=\sum_{\alpha} \frac{i}{s_{\alpha}} \sum_{\alpha \text {-diags. } i} \frac{\hat{n}_{i}\left(z_{\alpha}\right) \hat{\tilde{n}}_{i}\left(z_{\alpha}\right)}{\prod \hat{s}_{\alpha_{i}}\left(z_{\alpha}\right)} \stackrel{?}{=} \sum_{\text {diags. } i} \frac{n_{i} \tilde{n}_{i}}{\prod s_{\alpha_{i}}} .
$$

Could differ by a function that is

- local
- gauge-invariant
- dimension (momentum) ${ }^{2}$

No such function can exist!

$$
-i \mathcal{M}_{n}=\sum_{\text {diags. } i} \frac{n_{i} \tilde{n}_{i}}{\prod s_{\alpha_{i}}}
$$

The Squaring Relations from a Lagrangian Viewpoint

Motivation

- Amplitudes computed from the ordinary YM Lagrangian do not satisfy Jacobi-like relations!
- Can Jacobi-like relations

$$
n_{i}+n_{j}+n_{k}=0
$$

arise from a Lagrangian?

- In what sense is

$$
\mathcal{L}_{\text {gravity }}=\left(\mathcal{L}_{\text {gauge }}\right)^{2} \quad ?
$$

The Squaring Relations from a Lagrangian Viewpoint

Ordinary $\mathcal{L}_{\mathrm{YM}}$ does not lead to BCJ-compatible amplitudes

Strategy

- Expand gauge theory Lagrangian as

$$
\mathcal{L}=\mathcal{L}_{\mathrm{YM}}+\mathcal{L}_{5}+\mathcal{L}_{6}+\ldots
$$

- Determine $\mathcal{L}_{n}, n \geq 5$ to make Jacobi-like relations manifest
- $\mathcal{L}_{n}, n \geq 5$ must not alter amplitudes!
- Use auxiliary fields to turn Lagrangian cubic
- Square cubic interactions in momentum space $\Rightarrow \mathcal{L}_{\text {gravity }}$

The Squaring Relations from a Lagrangian Viewpoint

5-point

- No covariant, local \mathcal{L}_{5} can ensure Jacobi
- Instead:

$$
\begin{aligned}
\mathcal{L}_{5}= & -\frac{1}{2} g^{3}\left(f^{a_{1} a_{2} b} f^{b a_{3} c}+f^{a_{2} a_{3} b} f^{b a_{1} c}+f^{a_{3} a_{1} b} f^{b a_{2} c}\right) f^{c a_{4} a_{5}} \\
& \times \partial_{[\mu} A_{\nu]}^{a_{1}} A_{\rho}^{a_{2}} A^{a_{3} \mu} \frac{1}{\square}\left(A^{a_{4} \nu} A^{a_{5} \rho}\right) .
\end{aligned}
$$

- non-local and vanishing by Jacobi-identity
- can add one "self-BCJ" term:

$$
\begin{aligned}
\Delta \mathcal{L}_{5} \propto g^{3} f^{a_{1} a_{2} b} f^{b_{3} c} f^{c a_{4} a_{5}}(& \partial_{(\mu} A_{\nu)}^{a_{1}} A_{\rho}^{a_{2}} A^{a_{3} \mu}+\partial_{(\mu} A_{\nu)}^{a_{2}} A_{\rho}^{a_{3}} A^{a_{1} \mu} \\
& \left.+\partial_{(\mu} A_{\nu)}^{a_{3}} A_{\rho}^{a_{1}} A^{a_{2} \mu}\right) \frac{1}{\square}\left(A^{a_{4} \nu} A^{a_{5} \rho}\right) .
\end{aligned}
$$

- introducing auxiliary fields \Rightarrow local and cubic

The Squaring Relations from a Lagrangian Viewpoint

6-point

- \mathcal{L}_{5} not sufficient to ensure Jacobi at 6-point
- \mathcal{L}_{6} contains terms of the form

$$
\frac{1}{\square}\left(\partial A^{a_{1}} A^{a_{2}} A^{a_{3}}\right) \frac{1}{\square}\left(A^{a_{4}} A^{a_{5}}\right) \partial A^{a_{6}}, \quad \frac{1}{\square}\left(A^{a_{1}} A^{a_{2}}\right) \partial A^{a_{3}} \frac{1}{\square}\left(\partial A^{a_{4}} A^{a_{5}}\right) A^{a_{6}}!, \ldots
$$

- \mathcal{L}_{6} vanishes by Jacobi-identity
- 30 different "self-BCJ" terms
$\Rightarrow B C J$ seems easy to satisfy at tree-level

n-point: General structure

- need to add new "vanishing" terms \mathcal{L}_{n} for all n
- full local cubic Lagrangian \Rightarrow infinitely many auxiliary fields
- Non-polynomial structure not surprising: gives covariant $\mathcal{L}_{\text {gravity }}$!
- To find general \mathcal{L}_{n} : systematic approach? symmetry principle?

Asymmetric Squaring Relations

BCJ Squaring Relations

$$
n_{i}+n_{j}+n_{k}=0, \quad \tilde{n}_{i}+\tilde{n}_{j}+\tilde{n}_{k}=0 \quad \Rightarrow \quad-i \mathcal{M}_{n}=\sum_{\text {diags. } i} \frac{n_{i} \tilde{n}_{i}}{\prod s_{\alpha_{i}}}
$$

Gauge Transformation

$$
n_{i} \rightarrow n_{i}+\Delta_{i}, \quad \Delta_{i}+\Delta_{j}+\Delta_{k} \neq 0 \quad \Rightarrow \quad \sum_{\text {diags. } i} \frac{\Delta_{i} \tilde{n}_{i}}{\prod s_{\alpha_{i}}}=0 .
$$

Generalized "Asymmetric" Squaring Relations

$$
n_{i}+n_{j}+n_{k} \neq 0, \quad \tilde{n}_{i}+\tilde{n}_{j}+\tilde{n}_{k}=0 \quad \Rightarrow \quad-i \mathcal{M}_{n}=\sum_{\text {diags. } i} \frac{n_{i} \tilde{n}_{i}}{\prod s_{\alpha_{i}}} .
$$

see also: BCJ [arXiv:1004.0476]; other 5-point generalizations: BDSV [arXiv:1003.2403]

New Representations of Gauge and Gravity Amplitudes

Color-decomposition of Gauge Theory Amplitudes

Del Duca, Dixon, and Maltoni [hep-ph/9910563]

$$
\mathcal{A}_{n}(1,2, \ldots, n)=\sum_{\sigma \in S_{n-2}} c_{1, \sigma_{2}, \ldots, \sigma_{n-1}, n} A_{n}\left(1, \sigma_{2}, \ldots, \sigma_{n-1}, n\right)
$$

$$
c_{1, \sigma_{2}, \ldots, \sigma_{n-1}, n} \longleftrightarrow
$$

Only relies on algebraic properties of color factors!

New Representations of Gauge and Gravity Amplitudes

Color-decomposition of Gauge Theory Amplitudes

Del Duca, Dixon, and Maltoni [hep-ph/9910563]

$$
\mathcal{A}_{n}(1,2, \ldots, n)=\sum_{\sigma \in S_{n-2}} c_{1, \sigma_{2}, \ldots, \sigma_{n-1}, n} A_{n}\left(1, \sigma_{2}, \ldots, \sigma_{n-1}, n\right)
$$

$$
c_{1, \sigma_{2}, \ldots, \sigma_{n-1}, n} \longleftrightarrow
$$

Only relies on algebraic properties of color factors!
Dual Decomposition of Gauge Theory Amplitudes

$$
\mathcal{A}_{n}(1,2, \ldots, n)=\sum_{\sigma \in S_{n-2}} n_{1, \sigma_{2}, \ldots, \sigma_{n-1}, n} A_{n}^{\text {scalar }}\left(1, \sigma_{2}, \ldots, \sigma_{n-1}, n\right)
$$

$$
\left.n_{1, \sigma_{2}, \ldots, \sigma_{n-1}, n} \longleftrightarrow \quad 1 \longrightarrow\right|^{\sigma_{2}} \sigma_{3} \sigma_{4}^{\sigma_{4}} \sigma_{n-1}^{\sigma_{n-1}}
$$

New Representations of Gauge and Gravity Amplitudes

Color-decomposition of Gauge Theory Amplitudes

Del Duca, Dixon, and Maltoni [hep-ph/9910563]

$$
\mathcal{A}_{n}(1,2, \ldots, n)=\sum_{\sigma \in S_{n-2}} c_{1, \sigma_{2}, \ldots, \sigma_{n-1}, n} A_{n}\left(1, \sigma_{2}, \ldots, \sigma_{n-1}, n\right)
$$

$$
c_{1, \sigma_{2}, \ldots, \sigma_{n-1}, n} \longleftrightarrow
$$

Only relies on algebraic properties of color factors!

New Representation of Gravity Amplitudes

$$
\mathcal{M}_{n}(1,2, \ldots, n)=\sum_{\sigma \in S_{n-2}} n_{1, \sigma_{2}, \ldots, \sigma_{n-1}, n} \tilde{A}_{n}\left(1, \sigma_{2}, \ldots, \sigma_{n-1}, n\right)
$$

$$
n_{1, \sigma_{2}, \ldots, \sigma_{n-1}, n} \longleftrightarrow \quad{ }^{\frac{\sigma_{2}}{2}} \sigma_{3} \sigma_{4} \quad \sigma_{n-1}
$$

Explicit Expressions for Numerators

- Numerators n_{i} can be explicitly constructed for 5-points, 6-points,... \Rightarrow Brute force construction, still rather mysterious
- Is there an explicit, theory-independent, all-order expression for n_{i} ?

Recall: New Representation of Gravity Amplitudes

$$
\mathcal{M}_{n}=i \sum_{\sigma \in S_{n-2}} n_{1, \sigma_{2}, \ldots, \sigma_{n-1}, n} \times \tilde{A}_{n}\left(1, \sigma_{2}, \ldots, \sigma_{n-1}, n\right)
$$

Recall: KLT

$$
\begin{array}{r}
\mathcal{M}_{n}=i\left[(-)^{n+1} \sum_{\text {perms }} f\left(i_{1}, \ldots i_{j}\right) \bar{f}\left(l_{1}, \ldots l_{j}\right) A_{n}\left(i_{1}, \ldots i_{j}, 1, n-1, l_{1}, \ldots, l_{j}, n\right)\right] \tilde{A}_{n}(1, \ldots n-1, n) \\
\\
+\mathcal{P}(2, \ldots, n-2)
\end{array}
$$

Explicit Expressions for Numerators

- Numerators n_{i} can be explicitly constructed for 5-points, 6-points,... \Rightarrow Brute force construction, still rather mysterious
- Is there an explicit, theory-independent, all-order expression for n_{i} ?

Recall: New Representation of Gravity Amplitudes

$$
\mathcal{M}_{n}=i \sum_{\sigma \in S_{n-2}} n_{1, \sigma_{2}, \ldots, \sigma_{n-1}, n} \times \tilde{A}_{n}\left(1, \sigma_{2}, \ldots, \sigma_{n-1}, n\right)
$$

Recall: KLT

$$
\begin{array}{r}
\mathcal{M}_{n}=i \underbrace{}_{\left.n_{1, \ldots, n-1, n}^{(-)^{n+1} \sum_{\text {perms }} f\left(i_{1}, \ldots i_{j}\right) \bar{f}\left(l_{1}, \ldots l_{j}\right) A_{n}\left(i_{1}, \ldots i_{j}, 1, n-1, l_{1}, \ldots, l_{j}, n\right)}\right]}+\mathcal{A}(2, \ldots, n-2)
\end{array}
$$

This representation is non-local and ideal: $n_{1, \sigma_{1}, \ldots, \sigma_{n-1}, n}=0$ for $\sigma_{n-1} \neq n-1$

The Squaring Relations at Loop Level

at loop level

- KLT used in unitarity cuts for tree subamplitudes:

- Only applicable on the cut, and different for each cut
- Of practical importance, but no loop-level KLT relation

The Squaring Relations at Loop Level

Squaring relations at loop level

see also: Bern, Carrasco, Johansson [arXiv:1004.0476], and Talk by J. J. Carrasco

- through the unitarity method, tree derivation generalizes to loop level
- large z behavior \leftrightarrow cut-constructability
\Rightarrow No issue if cuts are carried out in D dimensions
- assumption: numerators arranged to satisfy Jacobi-like relations:
$(-i)^{L} \mathcal{A}_{n}^{L \text {-loop }}=\sum_{\text {diags. } i} \int \prod_{a=1}^{L} \frac{d^{D} l_{a}}{(2 \pi)^{D}} \frac{n_{i}\left(I_{1}, \ldots, I_{L}\right) c_{i}}{\prod s_{\alpha_{i}}\left(I_{1}, \ldots, I_{L}\right)}, \quad n_{i}+n_{j}+n_{k}=0$.
Then:

$$
(-i)^{L+1} \mathcal{M}_{n}^{L \text {-loop }}=\sum_{\text {diags. } i} \int \prod_{a=1}^{L} \frac{d^{D} l_{a}}{(2 \pi)^{D}} \frac{n_{i}\left(I_{1}, \ldots, I_{L}\right) \tilde{n}_{i}\left(I_{1}, \ldots, I_{L}\right)}{\prod s_{\alpha_{i}}\left(I_{1}, \ldots, I_{L}\right)},
$$

- holds for arbitrary loop momenta (with internal lines off-shell)
- A universal relation, not a different one for each cut

Summary and Outlook

Summary

- Origin of Squaring Relations understood from a QFT perspective
- Squaring implemented at a Lagrangian level
- Better understanding of "gravity=(gauge) ${ }^{2}$ " (for trees and loops)
- Various useful new expressions for gauge and gravity amplitudes
- Explicit (but non-local!) Jacobi-satisfying numerators

Open problems

- Simple, explicit expression for local, Jacobi-satisfying numerators
- Better understanding of BCJ at loop level
- Can we see BCJ in the Grassmannian for planar $\mathcal{N}=4 \mathrm{SYM}$? (reconcile manifest locality with manifest planarity)
- Implications for the UV finiteness of $\mathcal{N}=8$ supergravity
- Non-perturbative analog of BCJ?

