PhD Student Triangle

May 14, 2014 Kings College London

Felix J. Rudolph Queen Mary University of London

based on 1403.7198 with J. Berkely and D. S. Berman

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

Motivation

Standard Solutions

Double Field Theory

The Wave in DFT

Extensions

Motivation

Kaluza-Klein Theory

Start with massless, uncharged state in full theory

- States in reduced theory have mass and charge
- Given by momentum in KK direction

Motivation

Kaluza-Klein Theory

- Start with massless, uncharged state in full theory
- States in reduced theory have mass and charge
- Given by momentum in KK direction

Example

- Null wave solution in M-theory gives D0-brane
- D0-brane is momentum mode in 11th direction
- Mass and charge given by momentum BPS state

Standard Solutions

pp-wave $ds^{2} = -H^{-1}dt^{2} + H \left[dz - (H^{-1} - 1)dt \right]^{2} + d\vec{y}_{(D-2)}^{2}$ $B_{\mu\nu} = 0, \qquad e^{-2\phi} = e^{-2\phi_{0}}$ F1-string $ds^{2} = -H^{-1} \left[dt^{2} - dz^{2} \right] + d\vec{y}_{(D-2)}^{2}$

$$B_{tz} = -(H^{-1} - 1), \qquad e^{-2\phi} = He^{-2\phi_0}$$

Harmonic Function

$$H = 1 + \frac{h}{|\vec{y}_{(D-2)}|^{D-4}}, \qquad \nabla^2 H = 0$$

Introduction

Introduction to Double Field Theory

Novel formulation of string theory

- Bosonic NS-NS sector: $g_{\mu\nu}$, $B_{\mu\nu}$ and ϕ
- Makes T-duality a manifest symmetry of the action
- Metric and B-field on equal footing geometric unification

Fundamental Strings are Massless Waves Double Field Theory T-Duality & Doubled Geometry

T-Duality

Winding modes

- Strings can wind around compact dimensions
- ▶ Winding modes ↔ momentum modes in dual space
- Mass spectrum of closed string in circle with radius R

$$M^{2} = (N + \tilde{N} - 2) + p^{2} \frac{\ell_{s}^{2}}{R^{2}} + \tilde{p}^{2} \frac{\ell_{s}^{2}}{\tilde{R}^{2}}$$

• Invariant under $R \leftrightarrow \tilde{R} = \frac{\ell_s^2}{R}$ and $p \leftrightarrow \tilde{p}$

Fundamental Strings are Massless Waves Double Field Theory T-Duality & Doubled Geometry

T-Duality

Winding modes

- Strings can wind around compact dimensions
- $\blacktriangleright \text{ Winding modes} \leftrightarrow \text{momentum modes in dual space}$
- Mass spectrum of closed string in circle with radius R

$$M^{2} = (N + \tilde{N} - 2) + p^{2} \frac{\ell_{s}^{2}}{R^{2}} + \tilde{p}^{2} \frac{\ell_{s}^{2}}{\tilde{R}^{2}}$$

- Invariant under
$$R\leftrightarrow \tilde{R}=rac{\ell_s^2}{R}$$
 and $p\leftrightarrow \tilde{p}$

Combine space and dual space

• O(D,D) structure group \rightarrow invariant metric $\eta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Geometric Framework

Doubling the dimension of space to $2 {\cal D}$

- Include winding coordinates \tilde{x}_{μ}
- ▶ Need section condition to pick *D* dimensions

Geometric Framework

Doubling the dimension of space to $2 D \,$

- Include winding coordinates \tilde{x}_{μ}
- ► Need section condition to pick *D* dimensions

Unification of two concepts

- Metric and B-field \rightarrow generalized metric
- \blacktriangleright Diffeos and gauge transformations \rightarrow generalized diffeos
- Generated by generalized Lie derivative

Fundamental Strings are Massless Waves
Double Field Theory
The Doubled Formalism

The Doubled Formalism

Generalized coordinates

• Combine x^{μ} and \tilde{x}_{μ} into

$$X^M = (x^\mu, \tilde{x}_\mu)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\blacktriangleright \ \mu = 1, \dots, D$$
 and $M = 1, \dots, 2D$

The Doubled Formalism

Generalized coordinates

• Combine x^{μ} and \tilde{x}_{μ} into

$$X^M = (x^\mu, \tilde{x}_\mu)$$

•
$$\mu = 1, \dots, D$$
 and $M = 1, \dots, 2D$

Generalized metric

• Combine metric $g_{\mu\nu}$ and Kalb-Ramond field $B_{\mu\nu}$ into

$$\mathcal{H}_{MN} = \begin{pmatrix} g_{\mu\nu} - B_{\mu\rho}g^{\rho\sigma}B_{\sigma\nu} & B_{\mu\rho}g^{\rho\nu} \\ -g^{\mu\sigma}B_{\sigma\nu} & g^{\mu\nu} \end{pmatrix}$$

• Rescale the dilaton $e^{-2d} = \sqrt{g}e^{-2\phi}$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Fundamental Strings are Massless Waves
Double Field Theory
The Doubled Formalism

The DFT Action

The action integral

$$S = \int \mathrm{d}^{2D} X e^{-2d} R$$

The Ricci scalar

$$R = \frac{1}{8} \mathcal{H}^{MN} \partial_M \mathcal{H}^{KL} \partial_N \mathcal{H}_{KL} - \frac{1}{2} \mathcal{H}^{MN} \partial_M \mathcal{H}^{KL} \partial_K \mathcal{H}_{NL} + 4 \mathcal{H}^{MN} \partial_M \partial_N d - \partial_M \partial_N \mathcal{H}^{MN} - 4 \mathcal{H}^{MN} \partial_M d\partial_N d + 4 \partial_M \mathcal{H}^{MN} \partial_N d$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Equations of Motion

Since \mathcal{H} is constrained, get projected EoMs

$$P_{MN}{}^{KL}K_{KL} = 0$$

where

$$K_{MN} = \delta R / \delta \mathcal{H}^{MN}$$

$$P_{MN}{}^{KL} = \frac{1}{2} (\delta_M{}^{(K}\delta_N{}^{L)} - \mathcal{H}_{MP}\eta^{P(K}\eta_{NQ}\mathcal{H}^{L)Q})$$

Dilaton equation

R = 0

L The Solution

The DFT Wave Solution

$$X^M = (t, z, y^m, \tilde{t}, \tilde{z}, \tilde{y}_m)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Generalized metric

$$ds^{2} = \mathcal{H}_{MN} dX^{M} dX^{N}$$

= $(H - 2) \left[dt^{2} - dz^{2} \right] - H \left[d\tilde{t}^{2} - d\tilde{z}^{2} \right]$
+ $2(H - 1) \left[dt d\tilde{z} + d\tilde{t} dz \right]$
+ $\delta_{mn} dy^{m} dy^{n} + \delta^{mn} d\tilde{y}_{m} d\tilde{y}_{n}$

Rescaled dilaton

d = const.

— The Wave in DFT

L The Solution

The DFT Wave Solution

Properties

- No mass, null-like
- Carries momentum in \tilde{z} direction
- Interprete as null wave in DFT
- Smeared over dual directions \rightarrow obeys section condition

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Recovering the String

Reducing the Solution

KK-Ansatz to reduce dual directions

- Get fundamental string solution
- Extended along z
- Mass and charge given by momentum in \tilde{z}

Recovering the String

Reducing the Solution

KK-Ansatz to reduce dual directions

- Get fundamental string solution
- Extended along z
- Mass and charge given by momentum in \tilde{z}

If z and \tilde{z} are exchanged

- Get pp-wave in z direction
- Expected as wave and string are T-dual

└─ The Wave in DFT

Recovering the String

Key Result

The fundamental string is a massless wave in doubled space with momentum in a dual direction.

— The Wave in DFT

Goldstone Mode Analysis

Goldstone Mode Analysis

Zero modes

- Symmetry breaking
- Moduli \rightarrow collective coordinates
- Generated by large gauge transformations / diffeos

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Make local on worldvolume \rightarrow get zero modes

— The Wave in DFT

Goldstone Mode Analysis

Goldstone Mode Analysis

Zero modes

- Symmetry breaking
- Moduli \rightarrow collective coordinates
- Generated by large gauge transformations / diffeos

Make local on worldvolume \rightarrow get zero modes

Number of modes

- String: D-2 modes
- ▶ Doubled wave / string: ???

Fundamental Strings are Massless Waves The Wave in DFT Goldstone Mode Analysis

Constructing the Zero Modes

Transformations of ${\cal H}$ and d

$$h_{MN} = \mathcal{L}_{\xi} \mathcal{H}_{MN} \qquad \qquad \lambda = \mathcal{L}_{\xi} d$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fundamental Strings are Massless Waves The Wave in DFT Goldstone Mode Analysis

Constructing the Zero Modes

Transformations of ${\cal H}$ and d

$$h_{MN} = \mathcal{L}_{\xi} \mathcal{H}_{MN} \qquad \qquad \lambda = \mathcal{L}_{\xi} d$$

Allow dependece on $x^a = (t, z)$ to get zero modes

$$\hat{\phi}^m \to \phi^m(x) \qquad \qquad \tilde{\phi}_m \to \tilde{\phi}^m(x)$$

~

Equations of motion

- Insert into DFT EoMs (two derivatives, first order)
- Find $\Box \phi = 0$ and $\Box \tilde{\phi} = 0$
- Also get self-duality relation for $\Phi^M = (0, \phi^m, 0, \tilde{\phi}_m)$

$$\mathcal{H}_{MN} \mathrm{d}\Phi^N = \eta_{MN} \star \mathrm{d}\Phi^N$$

Equations of motion

- Insert into DFT EoMs (two derivatives, first order)
- Find $\Box \phi = 0$ and $\Box \tilde{\phi} = 0$
- Also get self-duality relation for $\Phi^M = (0, \phi^m, 0, \tilde{\phi}_m)$

$$\mathcal{H}_{MN} \mathrm{d}\Phi^N = \eta_{MN} \star \mathrm{d}\Phi^N$$

Duality symmetric string in doubled space (Tseytlin)

- Can be written as (anti-)chiral equation for $\psi_\pm = \phi \pm ilde \phi$

$$\mathrm{d}\psi_{\pm} = \pm \star \mathrm{d}\psi_{\pm}$$

Summary

Wave solution in DFT

- Solution unifies pp-wave and F1-string (T-duals)
- Momentum mode in dual direction gives fundamental string

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Summary

Wave solution in DFT

- Solution unifies pp-wave and F1-string (T-duals)
- Momentum mode in dual direction gives fundamental string

Goldstone modes

- Find chiral zero modes on wave solution
- Correct degrees of freedom for doubled string

Other DFT Solutions

T-dual objects in string theory

- F1-string and pp-wave fundamental
- NS5-brane and KK-monopole solitonic
- D-branes? (Problem in DFT: couple to R-R forms)

NS5-brane / KK-monopole

• KK-circle in a dual direction, say \tilde{z}

• Periodic array of NS5-branes \rightarrow smeared along z

Extension to M-Theory

Extended theories

- Make U-duality manifest
- Include wrapping directions
- Geometrically unify metric and C-field(s)

Extension to M-Theory

Extended theories

- Make U-duality manifest
- Include wrapping directions
- Geometrically unify metric and C-field(s)

Example: SL(5)

- Duality group for M-theory in 4 dimensions x^{μ}
- Combine with 6 wrapping directions $y_{\mu\nu}$
- Wave in extended space gives M2-brane

Other Solutions

D0-brane $\mathrm{d}s^2 = -H^{-1}\mathrm{d}t^2 + \mathrm{d}\vec{y}^2_{(d-1)},$ $A_t = -(H^{-1} - 1)$ KK-monopole $ds^{2} = -dt^{2} + d\vec{x}_{(d-5)}^{2} + H^{-1} \left[dz + A_{i} dy^{i} \right]^{2} + H d\vec{y}_{(3)}^{2}$ $\partial_{[i}A_{j]} = \frac{1}{2}\epsilon_{ij}{}^k\partial_k H,$ $e^{-2\phi} = e^{-2\phi}$ NS5-brane

 $ds^{2} = -dt^{2} + d\vec{x}_{(d-5)}^{2} + Hd\vec{y}_{(4)}^{2}, \quad B_{zi} = A_{i}, \quad e^{-2\phi} = H^{-1}e^{-2\phi_{0}}$