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Classical Integrability at strong coupling

Flat connection A =
J + ∗J
x− 1

+
J − ∗J
x + 1

, J = −g−1dg

Spectrum Amplitudes

Ω(x) Ys(x)
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Summary of results

Simple integral equation for a set of 3n-15 generalized 
cross ratios           in terms of 3n-15 parameters

log Yk(θ) = −mk cosh θ + Ck + Kk,k′ " log(1 + Yk′)

Yk(θ) mk, Ck










Areareg =
∑

k

∫
dθ mk cosh θ log(1 + Yk(θ))

Takes the form of Thermodynamic Bethe Ansatz equations 
for an integrable model with relativistic particles of masses 
given by the m’s. The Area is the corresponding Free Energy! 

Very suggestive.... 

[Cross ratio]s = Ys(0)

e2θ = ζ2 =
x− 1
x + 1
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Example (in       kinematics)
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Figure 10: Left: Regularized area as a function of two real masses m1 and m2 for the decagon
with n = 10. When the masses are very large the Y -functions are exponentially suppressed
and the free energy vanishes. When they are very small the free energy tends to the analytic
prediction F = π/5 ! 0.63 from the high temperature limit. Right: For those values of m1

and m2 the cross ratios Y1(0) and Y2(0) cover a diamond shaped region. The regularized
area is plotted as function of these cross ratios.
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A Numerics

In this section we explain how to implement equations (40) numerically in Mathematica in a
very simple way (the code is quite similar to the one used in [39]). The algorithm is trivial,
we simply iterate the integral equation plugging the Y -functions at iteration k − 1 in the
right hand side of (40) and reading from the left hand side their values at the k-th iteration.
We start by defining the kernel appearing in the integral equations,

K[x_]=1/(2 Pi Cosh[x]);

and specify how many gluons we want to consider. We do that by introducing a list of
masses which appear in the integral equations. For example, we set the following numerical
values of the masses

40

In terms of masses In terms of cross ratios

R1,1

Parametric solution (10 gluons)

[
Area (m)
Cross ratios (m)

]
→ Area (Cross ratios)
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        preliminariesAdS3

Restrict to simple       kinematics, 
i.e. surfaces in
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Figure 2: Spacetime positions of the cusps for a polygon that is embedded in R1,1, which is
the boundary of AdS3. The positions of the cusps are given by a set of n/2 values x+

i and a
set of n/2 values x−

i .

cross ratios can be expressed in terms of the cross ratios in (19) as

χijkl(ζ = 1) =
x+

ijx
+
kl

x+
ikx

+
jl

(20)

χijkl(ζ = i) =
x−

ijx
−
kl

x−
ikx

−
jl

(21)

3.2 The AdS3 functional Y-system

We will now derive a set of functional equations for the inner products, or Wronskians,
〈sisj〉(ζ) made out of two small solutions of the linear problem. The starting point is the
Schouten identity, 〈sisj〉〈sksl〉+ 〈sisl〉〈sjsk〉+ 〈sisk〉〈slsj〉 = 0, applied to a particular choice
of small solutions:

〈sk+1s−k〉〈sks−k−1〉 = 〈sk+1s−k−1〉〈sks−k〉 + 〈sksk+1〉〈s−k−1s−k〉 . (22)

In our normalization the last two brackets are equal to one. Using (18) we see that this
identity becomes the SU(2) Hirota equation

T+
s T−

s = Ts+1Ts−1 + 1 , (23)

where : T2k+1 = 〈s−k−1sk+1〉 , T2k = 〈s−k−1sk〉+ (24)

or more uniformly Ts = 〈s0ss+1〉(e−i(s+1)π/2ζ). The superscripts ± indicate a shift in spectral
parameter, f± ≡ f(e±i π

2 ζ). Actually, from (22) we get (23) for s = 2k. For s odd we need to
start from a slightly different choice of indices in (22). Ts is non-zero for s = 0, . . . , n/2− 2.
Finally, we introduce the Y -functions Ys ≡ Ts−1Ts+1. Being a product of two next-to-nearest-
neighbor T -functions, the Y -functions are non-zero in a slightly smaller lattice parametrized
by s = 1, . . . , n/2−3. The number of Y -functions coincides with the number of independent
cross ratios.

11

A(ζ) = A +
1
ζ
Φzdz + ζΦz̄dz , [Dz, Dz̄] = 0Flat SL(2) connection

⇒ p(z) = TrΦ2
z/2 Holomorphic function (            )T (z)=0

R1,1

AdS3

|z|→∞
• Having 2n cusps

Boundary conditions
• Simple              asymptotics as in four cusp solution ⇒ A ∼ 0 at large |z|

p = zn−2 + a1zn−3 + . . .

The area Area = 2
∫

d2z Tr(ΦzΦz̄)

Z2 projection UA(ζ)U−1 = A(−ζ)
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Flat section

Spinor        vector problems

        preliminaries - The linear problemAdS3

[d +A(ζ)]ϕa = 0 , a = 1, 2

Yaȧ = ϕ(1)·M ·ϕȧ(i)→
∣∣∣∣

Y−1 + Y2 Y1 − Y0

Y1 + Y0 Y−1 − Y2

∣∣∣∣ = −1

SL(2) (traceless) connection (Wronskian)⇒ 〈ϕ, ψ〉 ≡ εαβϕαψβ = const

The cross ratios
x+

ijx
+
kl

x+
ikx+

jl

=
〈si, sj〉 〈sk, sl〉
〈si, sk〉 〈sj , sl〉

(1)

|z| → ∞At

n Stokes sectors

- small in sector isi bi - big in sector i 12

0

−1

w → z
n
2 ⇒ ϕ→ e±(z

n
2 /ζ+z̄

n
2 ζ)

d +A(ζ) ∼ d +
dz

ζ

(√
p 0

0 −√p

)
+ ζdz̄

(√
p̄ 0

0 −
√

p̄

)
, dw =

√
pdz
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Black board derivation

Friday, May 7, 2010



Conclusions

Since the area is the free energy, this formula looks like we are computing the partition function of the  
system on a torus, where one of the sides has length proportional to        . 

- Continuous limit.
- The quantum problem.
- How to introduce a spectral parameter at weak coupling?
- Correlation functions.
 

A ∼ e−
√

λ
2π Area

Future directions

√
λ










Thank you
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Generic AdS5 Kinematics

where α, β, γ are short-hand for

αs ≡ log
(1 + Y1,s) (1 + Y3,s)

(1 + Y2,s−1) (1 + Y2,s+1)
, γs ≡ log

(1 + Y1,s−1) (1 + Y3,s+1)

(1 + Y1,s+1) (1 + Y3,s−1)
,

βs ≡ log
(1 + Y2,s)

2

(1 + Y1,s−1) (1 + Y1,s+1) (1 + Y3,s−1) (1 + Y3,s+1)
, (71)

and the kernels read

K1 ≡
1

2π cosh θ
, K2 =

√
2 cosh θ

π cosh 2θ
, K3 =

i

π
tanh 2θ . (72)

The unusual appearance of a kernel which does not decay at infinity (K3) is a direct conse-
quence of the singular behavior of A(w) at w = 0.

Comparing the large θ asymptotics following from these equations with those predicted
from the WKB analysis we see that the zero modes Cs correspond precisely to the constants
Cs in (66) while the Ds in the WKB asymptotics are given by Ds = i

π

∫
dθ γs(θ).

A more straightforward exercise, compared with deriving the integral equations, is to
check that they indeed yield the functional relations. To do so we simply compute the left
hand side of the functional equations using the integral equations. When doing this we
should use

f± = f(θ ± iπ/4 ∓ i0)

in order not to touch the lines where the kernels K2 and K3 become singular. Then, simple
identities such as K+

1 + K−
1 − K2 = 0 and K+

2 + K−
2 − 2K1 = δ(θ) eliminate all the kernels

in the right hand side of the integral equations and the functional equations are indeed
reproduced.

Up to now we have discussed the case where all masses are real and positive. To consider
the case of complex masses ms = |ms|eiϕs, we proceed in exactly the same way as described
in section 3.5 for the AdS3 TBA. That is, for small phases ϕs the integral equations take the
same form as in (70) with

ms → |ms| , Ya,s(θ) → Ya,s(θ + iϕs) , Ka,a′

s,s′ (θ − θ′) → Ka,a′

s,s′ (θ − θ′ + iϕs − iϕs′) ,

where K stands for the three different kernels. At |ϕs − ϕs+1| = π/4, π/2, 3π/4, . . . we pick
the poles from the appropriate kernels (see section 4.7 and appendix B for illustration). All
in all, the Y’s and therefore the area are continuous whereas the apparent jumps in the
integral equations are just an issue of the choice of contour.

4.5 Simple combinations of Y functions and sn+1 → s1 monodromies

When we normalize the solutions as in (56) it can happen that sn+1 is not equal to s1. Of
course, they have to be proportional to each other. The proportionality constant is called a
“formal monodromy”. For n odd, this constant can be removed, by rescaling the solutions
appropriately. For n even, there is some non-trivial gauge invariant information in this

26

Figure 3: In this figure we have summarized the structure of the T ’s and the Y ’s in a gauge
where we simplified the T ’s that can be simplified. The small solid black dots represent
non-zero T -functions. They are equal to one unless a = 1 and s = 1, . . . , n/2 − 2. At the
rightmost point in this line we have T1,n/2−2 = B where B is a function which cannot be set
to one only in the case that n/2 is even. In fact, in our case it is B = −em/ζ+m̄ζ. This is the
function that governs the monodormy sn/2 = −B(ζeiπ(n/2+1)/2)s0. The Y -functions are finite
in the points indicated by fat gray shaded balls. At all other points they are either zero or
infinity.

3.4 Analytic properties of the Y -functions

For finite values of ζ it is clear from (17) that the Ts are analytic functions of ζ , for ζ "=
0,∞. Generically, they will not be periodic under ζ → e2πiζ . In general, the Y ’s will be
meromorphic functions. However, in our case, since we can choose to set the denominators to
one, we see that the Y s have no poles and are thus analytic away from ζ = 0,∞. For ζ → 0
and ζ → ∞ they will have essential singularities. In this section we analyze the behavior in
these two regions.

When ζ → 0 we can solve the equations for the flat sections by making a WKB ap-
proximation, where ζ plays the role of h̄. This is explained in great detail in [24], here we
will summarize that discussion and apply it to our case. The final result is that, for an
appropriate choice of the polynomial p, we have the standard boundary conditions in TBA
equations. We will later discuss what happens for more general polynomials.

We are considering the equation
(

d +
Φzdz

ζ
+ A + ζ Φz̄dz̄

)
s = 0

When ζ → 0, it is convenient to make a similarity transformation that diagonalizes Φz →
√

p diag(1,−1). The solutions in this approximation go like exp
(
±1

ζ

∫ √
pdz

)
times constant

vectors. The WKB is a good approximation if we are following the solution along a line of
steepest descent. This is a line where the variation of the exponent, is real, Im(

√
p(z)ż/ζ) =

0. This condition is an equation which determines the WKB lines. Through each point in
the z plane we have one such line going through. At the single zeros of p we have three lines
coming in. The WKB approximation fails at the zeros of p (which are the turning points).
From each Stokes sector we have WKB lines that emanate from it. These lines can end in
other Stokes sectors or, for very special lines, on the zeros of p. If a line connects two Stokes

14

K1 ≡
1

2π cosh θ

two component spinors four component Hodge momentum twistors

AdS5AdS3

Figure 7: Strip where the T and Y -functions live in the AdS5 case. Small solid black dots
represent T -functions. At the boundary the T -functions are equal to one except at the three
nodes in the right boundary; there they takes the values indicated in the figure. In all the
points of the boundary the Y -functions are either zero or infinity. They are non-trivial in
the smaller domain indicated by the fat shaded gray circles.

or in a more compact notation

Y −
a,mY +

4−a,m

Ya+1,mYa−1,m
=

(1 + Ya,m+1)(1 + Y4−a,m−1)

(1 + Ya+1,m)(1 + Ya−1,m)
,

a = 1, 2, 3 ,
s = 1, . . . , n − 5

(65)

4.3 Analytic properties of the Y -functions

To derive the integral form of the Y-system equations it is important to identify the large
θ asymptotics. They are fixed by a WKB analysis. The method is very similar to the one
used for the AdS3 case, but a bit more involved. We will leave the details for appendix E
and state here the final results.

We choose the polynomial P to be such that all zeros are on the real axis and P (z) > 0
for sufficiently large z. Then the large θ behavior of the Y -functions is

log Y1,s → −ms cosh(θ) − Cs ± Ds , θ → ±∞

log Y3,s → −ms cosh(θ) + Cs ∓ Ds , θ → ±∞ (66)

log Y2,s → −
√

2 ms cosh(θ) , θ → ±∞

where θ = log(ζ). The constants Cs and Ds arise from the components of the connection
A that survive the Z4 projection. For loops in signature (1, 3) or (3, 1) the Ds’s are real
while the Cs’s are purely imaginary, see appendix E. In fact, we have the general reality
condition12

(Ya,s(ζ))∗ = Y4−a,s(1/ζ
∗)

12In (2,2) signature the reality condition is (Ya,s(ζ))∗ = Ya,s(1/ζ∗).

24

Ys , s = 1, . . . , n/2− 3 Ya,s , a = 1, 2, 3, s = 1, . . . , n− 5
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AdS5

In particular, for large θ = log ζ , we see that

[log (Y1,s/Y3,s) (+∞)]∗ = − log (Y1,s/Y3,s) (−∞)

which indeed implies what we said above regarding Ds and Cs. It turns out that the ms can
be promoted to complex constants by changing the position of the zeros of the polynomial13.
These n−3 complex constants, together with the purely imaginary Cs, constitute the 3(n−5)
parameters of the problem.

4.4 TBA equations in AdS5

To derive a set of integral equations from the functional Y-system we follow again the same
route as in the AdS3 case. As explained in the AdS3 case, a big advantage of the integral
form of the Y-system equations is the straightforward numerical implementation of these
equations. We first consider the case where all masses are real and positive. We then
introduce a set of functions la,s = log(Ya,s) + ma,s cosh θ which are meromorphic in the strip
−π/4 < Im(θ) < π/4 and bounded as we approach infinity inside this strip. Let us first
assume that these functions are actually holomorphic in the strip and then we will mention
what happens when there are poles. Equally important they obey

l+a,s + l−4−a,s − la+1,s − la−1,s = log Y +
a,s + log Y −

4−a,s − log Ya+1,s − log Ya−1,s . (67)

The right hand side of this equality is the logarithm of the left hand side of the Y-system
functional equations (65) derived above. Now we go to Fourier space where we have

F(l±a,s)(ω) = e∓
πω
4 F(la,s)(ω) (68)

where F denotes the Fourier transform. When writing this relation we are making use of
the analytic properties of la,s mentioned above. The Y -system equations can then be cast as

Aaa′(ω)F(la′,s)(ω) = F
(

log
(1 + Ya,s+1)(1 + Y4−a,s−1)

(1 + Ya−1,s)(1 + Ya+1,s)

)
(ω) (69)

For w #= 0, the 3×3 matrix Aaa′(ω) is invertible and we can multiply this relation by A−1(w)
to extract F(la,s). For w = 0 the matrix is not invertible and therefore when doing this
operation we should allow for the constant zero modes in the final result. Finally, we rewrite
the corresponding expression for F(la,s) in position space. We obtain in this way the final
set of integral equations

log (Y2,s) = −ms

√
2 cosh(θ) − K2 % αs − K1 % βs

log (Y1,s) = −ms cosh(θ) − Cs −
1

2
K2 % βs − K1 % αs −

1

2
K3 % γs (70)

log (Y3,s) = −ms cosh(θ) + Cs −
1

2
K2 % βs − K1 % αs +

1

2
K3 % γs

13In this case the conditions (66) get modified to logY1,s ∼ −ms

2 e−θ −Cs −Ds for θ → −∞ and log Y1,s ∼
− m̄s

2 eθ − Cs + Ds for θ → +∞. And similarly for the other Y functions.

25

where α, β, γ are short-hand for

αs ≡ log
(1 + Y1,s) (1 + Y3,s)

(1 + Y2,s−1) (1 + Y2,s+1)
, γs ≡ log

(1 + Y1,s−1) (1 + Y3,s+1)

(1 + Y1,s+1) (1 + Y3,s−1)
,

βs ≡ log
(1 + Y2,s)

2

(1 + Y1,s−1) (1 + Y1,s+1) (1 + Y3,s−1) (1 + Y3,s+1)
, (71)

and the kernels read

K1 ≡
1

2π cosh θ
, K2 =

√
2 cosh θ

π cosh 2θ
, K3 =

i

π
tanh 2θ . (72)

The unusual appearance of a kernel which does not decay at infinity (K3) is a direct conse-
quence of the singular behavior of A(w) at w = 0.

Comparing the large θ asymptotics following from these equations with those predicted
from the WKB analysis we see that the zero modes Cs correspond precisely to the constants
Cs in (66) while the Ds in the WKB asymptotics are given by Ds = i

π

∫
dθ γs(θ).

A more straightforward exercise, compared with deriving the integral equations, is to
check that they indeed yield the functional relations. To do so we simply compute the left
hand side of the functional equations using the integral equations. When doing this we
should use

f± = f(θ ± iπ/4 ∓ i0)

in order not to touch the lines where the kernels K2 and K3 become singular. Then, simple
identities such as K+

1 + K−
1 − K2 = 0 and K+

2 + K−
2 − 2K1 = δ(θ) eliminate all the kernels

in the right hand side of the integral equations and the functional equations are indeed
reproduced.

Up to now we have discussed the case where all masses are real and positive. To consider
the case of complex masses ms = |ms|eiϕs, we proceed in exactly the same way as described
in section 3.5 for the AdS3 TBA. That is, for small phases ϕs the integral equations take the
same form as in (70) with

ms → |ms| , Ya,s(θ) → Ya,s(θ + iϕs) , Ka,a′

s,s′ (θ − θ′) → Ka,a′

s,s′ (θ − θ′ + iϕs − iϕs′) ,

where K stands for the three different kernels. At |ϕs − ϕs+1| = π/4, π/2, 3π/4, . . . we pick
the poles from the appropriate kernels (see section 4.7 and appendix B for illustration). All
in all, the Y’s and therefore the area are continuous whereas the apparent jumps in the
integral equations are just an issue of the choice of contour.

4.5 Simple combinations of Y functions and sn+1 → s1 monodromies

When we normalize the solutions as in (56) it can happen that sn+1 is not equal to s1. Of
course, they have to be proportional to each other. The proportionality constant is called a
“formal monodromy”. For n odd, this constant can be removed, by rescaling the solutions
appropriately. For n even, there is some non-trivial gauge invariant information in this

26

where

and
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αs ≡ log
(1 + Y1,s) (1 + Y3,s)
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course, they have to be proportional to each other. The proportionality constant is called a
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Figure 7: Strip where the T and Y -functions live in the AdS5 case. Small solid black dots
represent T -functions. At the boundary the T -functions are equal to one except at the three
nodes in the right boundary; there they takes the values indicated in the figure. In all the
points of the boundary the Y -functions are either zero or infinity. They are non-trivial in
the smaller domain indicated by the fat shaded gray circles.

or in a more compact notation

Y −
a,mY +

4−a,m

Ya+1,mYa−1,m
=

(1 + Ya,m+1)(1 + Y4−a,m−1)

(1 + Ya+1,m)(1 + Ya−1,m)
,

a = 1, 2, 3 ,
s = 1, . . . , n − 5

(65)

4.3 Analytic properties of the Y -functions

To derive the integral form of the Y-system equations it is important to identify the large
θ asymptotics. They are fixed by a WKB analysis. The method is very similar to the one
used for the AdS3 case, but a bit more involved. We will leave the details for appendix E
and state here the final results.

We choose the polynomial P to be such that all zeros are on the real axis and P (z) > 0
for sufficiently large z. Then the large θ behavior of the Y -functions is

log Y1,s → −ms cosh(θ) − Cs ± Ds , θ → ±∞

log Y3,s → −ms cosh(θ) + Cs ∓ Ds , θ → ±∞ (66)

log Y2,s → −
√

2 ms cosh(θ) , θ → ±∞

where θ = log(ζ). The constants Cs and Ds arise from the components of the connection
A that survive the Z4 projection. For loops in signature (1, 3) or (3, 1) the Ds’s are real
while the Cs’s are purely imaginary, see appendix E. In fact, we have the general reality
condition12

(Ya,s(ζ))∗ = Y4−a,s(1/ζ
∗)

12In (2,2) signature the reality condition is (Ya,s(ζ))∗ = Ya,s(1/ζ∗).
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equal to

Aperiods = − i

2
wγ,γ′ZγZ̄γ′ (86)

Afree = − i

2
Zγwγ,γ′Mγ′,γ′′

∫
dθ′

2π
e−θ′ log(1 + Ŷa,s(θ

′)) (87)

Afree = −2
∑

a,s

∫
dθ

2π
Za,se

−θ log[1 + Ŷa,s(θ)] (88)

Here we have used that Zγwγ,γ′Mγ′,γ′′
= −4iZγ′′ for our case, due to the relation between

the Zγ (or ma,s) with various values of a implicit in (66). The matrix of cycle intersections
is given in appendix E, figure 18. We can take the average of (88) with a similar expression
which we obtain if we did the large ζ expansion to obtain

Afree = −
∑

a,s

∫
dθ

2π
[Za,se

−θ + Z̄a,se
θ] log[1 + Ŷa,s(θ)] (89)

Afree =
∑

s

∫
dθ

2π
|ms| cosh θ log

[
(1 + Y1,s)(1 + Y3,s)(1 + Y2,s)

√
2
]
(θ + iαs) (90)

where eiαs is the phase of ms. In the last equation we have written the final answer in terms
of the Y functions (as opposed to the Ŷ functions). We have also used the relation between
ms and Za,s, implicit in (66) and explicit in appendix F.1, eqn. (157). The explicit value of
Aperiods for in terms of the masses ms is given in appendix F.1.

One can give an alternative derivation of this formula in the spirit of the one given in
[19] for the n = 6 case. This alternative derivation starts with the observation that the
area A can be viewed as the generating function of transformations that change ζ . This
is the generating function when we define a Poisson bracket for the Hitchin system that
makes Φz and Φz̄ conjugate variables and similarly for Az and Az̄. Then one uses that the Ŷ
are variables whose Poisson brackets are computable and related to the cycle intersections.
Finally one uses the integral equations as above to expand the Ŷ functions for small ζ , to
find the Poisson brackets of the quantities involved in this expansion. In this way one can
check that the final expression for the area does indeed generate the desired transformation.

Note that if we view the Hitchin system as arising from anN = 2 supersymmetric theory,
then the Z4 projection that we had would break N = 2 to N = 1 supersymmetry. This
N = 1 theory has a global symmetry for rotations of Φz and Φz̄ in opposite directions. The
area is then the D term potential (or momentum map) for this symmetry. This connection
between a four dimensional supersymmetric theory and two dimensional quantum integrable
models is in the spirit of [31]. It would be interesting to find the precise relation. Note
however, that in our AdS5 problem we do not have supersymmetry, we have integrability.

4.7 The geometrical meaning of the Y-functions

In the previous sections we saw how to determine the area of the minimal surfaces for a
given choice of masses and chemical potentials in the Y -system equations. To identify which
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Finally

Figure 8: The cross ratio U [0]
2k−2 =

x
2
−k,kx

2
−k−1,k−1

x
2
−k−1,kx

2
−k,k−1

.

only need to know that we have a null sided polygon. When we introduce the λi from this
latter point of view, the λi are defined up to an overall rescaling. In (92) we have picked
a particular normalization. However, in the final expressions for the Y functions in terms
of λ, the overall normalization of each λi drops out, for the same reason that the overall
normalization of the si drops out. Each λi is associated to a null side of the polygon, and
a pair of consecutive λs determine the position of the cusp X i

ab = λi
[aλ

i+1
b] , where X i

ab are

six coordinates defined up to a rescaling obeying X2 = 0. Thus, they define a point on the
boundary of AdS space.

4.7.2 Traditional cross ratios from the Y functions

In this subsection, we explain how to obtain traditional cross ratios from the Y function. By
a “traditional” cross ratio we mean one constructed from physical distances as in (16). These
can be introduced via

U [r]
s ≡ 1 +

1

Y2,s

∣∣∣∣
θ=iπr/4

=
T+

2,sT
−
2,s

T2,s+1T2,s−1

∣∣∣∣
θ=iπr/4

. (96)

where we combined the definition of Y -function in terms of the T -functions with Hirota
equation (60). This ratio has been constructed so that it only involves the functions T2,s.
These are determinants of four small solutions of the form 〈sisi+1sjsj+1〉. We recall that the
physical cross ratios are ratios of four such quantities (16). For example,

U [0]
2k−2 =

〈s−k, s−k+1, sk, sk+1〉〈s−k−1, s−k, sk−1, sk〉
〈s−k−1, s−k, sk, sk+1〉〈s−k, s−k+1, sk−1, sk〉

=
x2
−k,kx

2
−k−1,k−1

x2
−k−1,kx

2
−k,k−1

, (97)

where xi,j ≡ xi −xj , see figure 8. If we consider U [2p]
2k−2 then we will shift the position of the

small solutions by p sectors, i.e. we will get a cross ratio involving the cusps {x−k−1+p,x−k+p}
and {xk−1+p,xk+p} of the polygon. We see that the index 2k − 2 is the number of cusps
between x−k+p and xk+p−1 (counted from the side of the cusp x0). Similarly, the cross ratio
involving sides {x−k−1+p,x−k+p} and {xk+p,xk+1+p}, which are separated by an odd number

of cusps, are given by U [2p+1]
2k−1 .
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Spacetime cross ratios:

Spacetime cross ratios:

Then

U [0]
2k−2 =

x2
−k,kx

2
−k−1,k−1

x2
−k−1,kx

2
−k,k−1

.
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