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Going beyond one-loop
• The aim of perturbation theory is the computation of 

physical observables at weak coupling, that can be 
compared to experiment.

• In QCD, only very few two-loop results are available:

➡ Use simpler theory as a playground to understand 
multi-loop amplitudes.

• MHV amplitudes in planar N=4 SYM:
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ABDK iteration

• Two-loop amplitudes are determined by the ABDK 
iteration

Chapter 9

The BDS ansatz and multi-Regge
kinematics

9.1 The ABDK/BDS ansatz

In Ref. [9], Anastasiou, Bern, Dixon and Kosower (ABDK) formulated an ansatz for the two-loop

n-point MHV amplitude in MSYM, which expresses the two-loop amplitude in terms of the one-loop

amplitude,

M (2)
n (ε) =

1

2

(

M (1)
n (ε)

)2
+ f (2)(ε)M (1)

n (2ε) + C(2) + O(ε), (9.1)

where

f (2)(ε) =
ψ(1 − ε) + γE

ε
and C(2) = −5

4
ζ4. (9.2)

Note that because of the infrared poles in 1/ε2 in the one-loop amplitude, the one-loop amplitude

must be known through O(ε2). The origin of this ansatz goes back to the computation by the same

people of the two-loop splitting function in MSYM, which was shown to satisfy an iteration relation

very similar to Eq. (9.1),

r(2)
S (ε) =

1

2

(

r(1)
S (ε)

)2
+ f (2)(ε) r(1)

S (2ε), (9.3)

where r(l)
S denotes the l-loop splitting function, rescaled by the tree-level result. Indeed, in the

collinear limit the one and two-loop n-point MHV amplitudes must factorise according to

M (1)
n → M (1)

n−1 + r(1)
S ,

M (2)
n → M (2)

n−1 + M (1)
n−1 r(1)

S + r(2)
S ,

(9.4)

and it is easy to see that the ABDK ansatz (9.1) is the only iteration which is compatible with both

the iteration of the two-loop splitting amplitude, Eq. (9.3) and the collinear factorisation (9.4). The

ansatz was backed up by comparing the iteration to the two-loop four-point amplitude in MSYM.

In Ref. [92] the ABDK ansatz was shown to hold also in the case of the five-point amplitude, which

has been computed numerically.

Bern, Dixon and Smirnov (BDS) computed the three-loop four-point MSYM amplitude [10], and

showed that it satisfies an iteration formula similar to the ABDK ansatz for the two-loop amplitude,

M (3)
4 (ε) = −1

3

(

M (1)
4 (ε)

)3
+ M (1)

4 (ε)M (2)
4 (ε) + f (3)(ε)M (1)

4 (3ε) + C(3) + O(ε), (9.5)
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exponential,

〈W [Cn]〉 = 1 +
∞
∑

L=1

aLW (L)
n = exp

∞
∑

L=1

aLw(L)
n , (2.3)

where the coupling is defined as

a =
g2N

8π2
. (2.4)

For the first two loop orders, one obtains

w(1)
n = W (1)

n , w(2)
n = W (2)

n −
1

2

(

W (1)
n

)2
. (2.5)

The one-loop coefficient w(1)
n was evaluated in Refs. [11, 12], where it was given in terms

of the one-loop n-point MHV amplitude,

w(1)
n =

Γ(1 − 2ε)

Γ2(1 − ε)
m(1)

n = m(1)
n − n

ζ2

2
+ O(ε) , (2.6)

where the amplitude is a sum of one-loop two-mass-easy box functions [30],

m(1)
n =

∑

p,q

F 2me(p, q, P,Q) , (2.7)

where p and q are two external momenta corresponding to two opposite massless legs,

while the two remaining legs P and Q are massive. The two-loop coefficient w(2)
n has been

computed analytically for n = 4 [13] and n = 5 [14] and numerically for n = 6 [16] and

n = 7, 8 [17].

In Ref. [14] it was established that the Wilson loop fulfils a special conformal Ward

identity, whose solution is the BDS ansatz plus, for n ≥ 6, an arbitrary function of the

conformally invariant cross-ratios, defined in Eq. (2.11). Thus, the two-loop coefficient w(2)
n

can be written as

w(2)
n (ε) = f (2)

WL(ε)w(1)
n (2ε) + C(2)

WL + R(2)
n,WL + O(ε) , (2.8)

where the constant is the same as in Eq. (1.2), C(2)
WL = C(2) = −ζ2

2/2, and the function

f (2)
WL(ε) is [13, 17, 31]2,

f (2)
WL(ε) = −ζ2 + 7ζ3ε − 5ζ4ε

2 . (2.9)

With the two-loop coefficient w(2)
n given by Eqs. (2.8) and (2.9) and the two-loop MHV

amplitude given by Eqs. (1.2) and (1.3), the duality between Wilson loops and amplitudes

is expressed by the equality of their remainder functions [17],

R(2)
n,WL = R(2)

n . (2.10)

Defining the conformally invariant cross ratios as,

uij =
x2

ij+1x
2
i+1j

x2
ijx

2
i+1j+1

, (2.11)

2Note that because of the different normalisation between the one-loop amplitude and the Wilson loop

(2.6), f
(2)
WL

differs from the analogous function for the amplitude, given after Eq. (1.2).
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+R(2)
n (uij)

• Remainder function is zero for n = 4, 5, but non zero 
starting from n = 6.

1. Introduction

In the planar N = 4 supersymmetric Yang-Mills (SYM) theory, Anastasiou, Bern, Dixon

and Kosower (ABDK) [1] proposed an iterative structure for the colour-stripped two-loop

scattering amplitude with an arbitrary number n of external legs in a maximally-helicity

violating (MHV) configuration. Writing at any loop order L, the amplitude M (L)
n as the

tree-level amplitude, M (0)
n , which depends on the helicity configuration, times a scalar

function, m(L)
n ,

M (L)
n = M (0)

n m(L)
n , (1.1)

the proposed iteration formula for the two-loop MHV amplitude m(2)
n (ε) was

m(2)
n (ε) =

1

2

[

m(1)
n (ε)

]2
+ f (2)(ε)m(1)

n (2ε) + C(2) + O(ε) . (1.2)

Thus the two-loop amplitude is determined in terms of the one-loop MHV amplitude m(1)
n (ε)

evaluated through to O(ε2) in the dimensional-regularisation parameter ε = (4− d)/2, the

constant C(2) = −ζ2
2/2, and the function f (2)(ε) = −ζ2− ζ3ε− ζ4ε2, with ζi = ζ(i) and ζ(z)

the Riemann zeta function.

Subsequently, Bern, Dixon and one of the present authors (BDS) proposed an all-loop

resummation formula [2] for the colour-stripped n-point MHV amplitude, which implies a

tower of iteration formulae, allowing one to determine the n-point amplitude at a given

number of loops in terms of amplitudes with fewer loops, evaluated to higher orders of

ε. BDS checked that the ansatz is correct for the three-loop four-point amplitude, by

evaluating analytically m(3)
4 (ε) through to finite terms, as well as m(2)

4 (ε) through to O(ε2)

and m(1)
4 (ε) through to O(ε4). The BDS ansatz has been proven to be correct also for

the two-loop five-point amplitude [3, 4], for which m(2)
5 (ε) has been computed numerically

through to finite terms, as well as m(1)
5 (ε) through to O(ε2).

Using the AdS/CFT correspondence, Alday and Maldacena showed that in the strong-

coupling limit the ansatz must break down for amplitudes with a large number of legs [5].

Likewise, there were hints of a failure of the ansatz from the six-point amplitude analysed

in the multi-Regge kinematics in a Minkowski region [6, 7]. The clue from AdS/CFT

provoked the numerical calculation of m(2)
6 (ε) through to finite terms and of m(1)

6 (ε) through

to O(ε2), where the BDS ansatz was demonstrated to fail [8], and where it was shown that

the finite pieces of the parity-even part of m(2)
6 (ε) are incorrectly determined by the ansatz

(although the parity-odd part of m(2)
6 (ε) does satisfy the ansatz [9]). In particular, it was

shown numerically that the two-loop remainder function, defined as the difference between

the two-loop amplitude and the BDS ansatz for it,

R(2)
n = m(2)

n (ε) −
1

2

[

m(1)
n (ε)

]2
− f (2)(ε)m(1)

n (2ε) − C(2) , (1.3)

is different from zero for n = 6, where R(2)
n is a function of the kinematical parameters of

the n-point amplitude, but a constant with respect to ε. However, the analytic form of

R(2)
6 was not computed.
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ABDK iteration
• The ABDK iteration is enough to fix completely the four-

point amplitude

• Starting from five points, something new happens:
The two-loop amplitude develops a parity-odd 
contribution!

= (     )
2

+

= (             )
2

+ +

• The parity-odd contirbutions however cancel in the 
logarithm.
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The five-point amplitude at two loops
• The appearance of these new pieces adds a new step in 

complexity!

• Several analytic representations are known that all indicate 
that the pentagon contribution has a very complicated 
analytic structure:
➡ High energy limit: Representation through Appell and 

Kampé de Fériet function; expansion in terms of 
Goncharov polylogarithms in complicated arguments:

J
H
E
P
0
1
(
2
0
1
0
)
0
4
2

We find

I(I)
0 (x1, x2) =

∫ 1

0
dv

i(0)(x1, x2, v)

v2 − x1v + x2v − v − x2
, (6.13)

and

I(I)
1 (x1, x2) =

∫ 1

0
dv

i(1)(x1, x2, v)

v2 + (−x1 + x2 − 1)v − x2
. (6.14)

where i(0) and i(1) are functions depending on (poly)logarithms of weight 2 and 3 respec-

tively in x1, x2 and v (see appendix F for the explicit expressions). Note that this implies

that I(I)
0 (x1, x2) and I(I)

1 (x1, x2) will have uniform weight 3 and 4 respectively, as expected.

Furthermore note that the poles in v = 0 and v = 1 have cancelled out. However, we still

need to be careful with the quadratic polynomial in the denominator of the integrand,

since it might vanish in the integration region. We analyze this situation in the rest of

this section.

We know already that the phase space boundaries in Region I require

√
x1 +

√
x2 < 1. (6.15)

This subspace of the square [0, 1]× [0, 1] is precisely the domain of the integral I(x1, x2; ε).

We can further divide this domain into

1. Region I(a): x1 < x2.

2. Region I(b): x2 < x1.

We now turn to the quadratic denominator in eqs. (6.13) and (6.14). The roots of this

quadratic polynomial are

λ1 ≡ λ1(x1, x2) =
1

2

(

1 + x1 − x2 −
√

λK

)

,

λ2 ≡ λ1(x1, x2) =
1

2

(

1 + x1 − x2 +
√

λK

)

,
(6.16)

where λK is defined by,

λK ≡ λK(x1, x2) = λ(x1, x2,−1) = 1 + x2
1 + x2

2 + 2x1 + 2x2 − 2x1x2. (6.17)

where λ denotes the Källen function,

λ(a, b, c) = (a − b − c)2 − 4bc. (6.18)

First, let us note that λK(x1, x2) > 0, ∀ (x1, x2) ∈ [0, 1] × [0, 1], and hence the square root

in eq. (6.16) is well defined in the Region I. Second, it is easy to show that in the square

[0, 1] × [0, 1] we have,

− 1 < λ1(x1, x2) < 0 and 1 < λ2(x1, x2) < 2. (6.19)
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➡ General kinematics: Representation through Appell 
functions. Expansion presently unknown.

[Del Duca, CD, Glover, Smirnov]

[Kniehl, Tarasov]
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Going beyond five points
• The first non trivial place where the remainder function 

appears is n=6:

= (                    )
2

+ ++ + R 

• Two-loop six-point integral basis is known, so we could in 
principle extract the remainder function from the 
amplitude.

• This would require the analytic computation of all two-loop 
master integrals, as well as of the hexagon to higher orders 
in epsilon.

• All of these nasty contributions cancel in the logarithm, so 
it would be desirable to directly compute the logarithm.
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• Wilson loops and the remainder function

• Regge exactness of Wilson loops - Or to compute 
perturbative Wilson loops efficiently

• The two-loop six-point remainder function

• Some selected results
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Wilson loops in N=4 SYM
• Definition of a Wilson loop:

• It is conjectured that Wilson loop along an n-edged polygon 
is equal to an n-point MHV scattering amplitude:

pi = xi,i+1 = xi − xi+1

conformally invariant cross ratios are not invariant in such a limit [22]. Less constraining

Regge limits have been analysed in Ref. [23]. The simplest of those limits to feature an

exact Regge factorisation of w(L)
6 is the quasi-multi-Regge kinematics (QMRK) of a pair

along the ladder [24, 25].

In Sec. 3, we recall the QMRK of a pair along the ladder for the six-edged Wilson loop,

and we show that the QMRK of three-of-a-kind along the ladder [26] for the seven-edged

Wilson loop, the QMRK of four-of-a-kind along the ladder [27] for the eight-edged Wilson

loop, and in general the QMRK of a cluster of (n − 4)-of-a-kind along the ladder for the

n-edged Wilson loop do not modify the analytic dependence of w(L)
n on the conformally

invariant cross ratios. That is, this class of kinematics exhibits an exact Regge factorisation

of w(L)
n . Thus, the result for w(L)

n in these kinematics is the same as the result in general

kinematics, although the computation is remarkably simplified with respect to the same

computation in general kinematics. Finally, we note that although in Sec. 4 we apply the

analysis of Sec. 3 to the computation of the six-edged two-loop Wilson loop, nothing of

what we consider in Sec. 3 is specific to two loops: The analysis of Sec. 3 is valid for any

number of loops.

In Sec. 4, we brief on how the Feynman-parameter-like integrals of the two-loop six-

edged Wilson loop have been computed in the QMRK of a pair along the ladder, and on the

type of functions which appear in the final result. Because of the exact Regge factorisation,

the ensuing remainder function is valid in general kinematics. It can be expressed as a linear

combination of multiple polylogarithms of uniform transcendental weight four. However,

the result is far too long to be reported in this letter. We present it in an electronic form at

www.arxiv.org where a text file containing the Mathematica expression for the remainder

function is provided.

2. The two-loop Wilson loop

The Wilson loop is defined through the path-ordered exponential,

W [Cn] = Tr P exp

[

ig

∮

dτ ẋµ(τ)Aµ(x(τ))

]

, (2.1)

computed on a closed contour Cn. In what follows, the closed contour is a light-like n-edged

polygonal contour [10]. The contour is such that labelling the n vertices of the polygon as

x1, . . . , xn, the distance between any two contiguous vertices, i.e., the length of the edge

in between, is given by the momentum of a particle in the corresponding colour-ordered

scattering amplitude,

pi = xi − xi+1 , (2.2)

with i = 1, . . . , n. Because the n momenta add up to zero,
∑n

i=1 pi = 0, the n-edged

contour closes, provided we make the identification x1 = xn+1.

In the weak-coupling limit, the Wilson loop can be computed as an expansion in

the coupling. The expansion of Eq. (2.1) is done through the non-abelian exponentiation

theorem [28, 29], which gives the vacuum expectation value of the Wilson loop as an

– 3 –

• Proven analytically at one-loop for arbitrary n, and at two-
loops for n = 4, 5, 6.

=
[Alday, Maldacena;

Drummond, Korchemsky, Sokatchev]

[Drummond, Henn, Korchemsky, Sokatchev;
Brandhuber, Heslop, Spence]
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Wilson loops in N=4 SYM
• Wilson loops possess a conformal symmetry, and it was 

shown that a solution to the corresponding Ward identities 
is the BDS ansatz, e.g., at two-loops,

exponential,

〈W [Cn]〉 = 1 +
∞
∑

L=1

aLW (L)
n = exp

∞
∑

L=1

aLw(L)
n , (2.3)

where the coupling is defined as

a =
g2N

8π2
. (2.4)

For the first two loop orders, one obtains

w(1)
n = W (1)

n , w(2)
n = W (2)

n −
1

2

(

W (1)
n

)2
. (2.5)

The one-loop coefficient w(1)
n was evaluated in Refs. [11, 12], where it was given in terms

of the one-loop n-point MHV amplitude,

w(1)
n =

Γ(1 − 2ε)

Γ2(1 − ε)
m(1)

n = m(1)
n − n

ζ2

2
+ O(ε) , (2.6)

where the amplitude is a sum of one-loop two-mass-easy box functions [30],

m(1)
n =

∑

p,q

F 2me(p, q, P,Q) , (2.7)

where p and q are two external momenta corresponding to two opposite massless legs,

while the two remaining legs P and Q are massive. The two-loop coefficient w(2)
n has been

computed analytically for n = 4 [13] and n = 5 [14] and numerically for n = 6 [16] and

n = 7, 8 [17].

In Ref. [14] it was established that the Wilson loop fulfils a special conformal Ward

identity, whose solution is the BDS ansatz plus, for n ≥ 6, an arbitrary function of the

conformally invariant cross-ratios, defined in Eq. (2.11). Thus, the two-loop coefficient w(2)
n

can be written as

w(2)
n (ε) = f (2)

WL(ε)w(1)
n (2ε) + C(2)

WL + R(2)
n,WL + O(ε) , (2.8)

where the constant is the same as in Eq. (1.2), C(2)
WL = C(2) = −ζ2

2/2, and the function

f (2)
WL(ε) is [13, 17, 31]2,

f (2)
WL(ε) = −ζ2 + 7ζ3ε − 5ζ4ε

2 . (2.9)

With the two-loop coefficient w(2)
n given by Eqs. (2.8) and (2.9) and the two-loop MHV

amplitude given by Eqs. (1.2) and (1.3), the duality between Wilson loops and amplitudes

is expressed by the equality of their remainder functions [17],

R(2)
n,WL = R(2)

n . (2.10)

Defining the conformally invariant cross ratios as,

uij =
x2

ij+1x
2
i+1j

x2
ijx

2
i+1j+1

, (2.11)

2Note that because of the different normalisation between the one-loop amplitude and the Wilson loop

(2.6), f
(2)
WL

differs from the analogous function for the amplitude, given after Eq. (1.2).
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Wilson loops in N=4 SYM
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• ... but we can always add a arbitrary function of conformal 
invariants and we still obtain a solution to the Ward 
identities!

+R(2)
n (uij)

exponential,

〈W [Cn]〉 = 1 +
∞
∑

L=1

aLW (L)
n = exp

∞
∑

L=1

aLw(L)
n , (2.3)

where the coupling is defined as

a =
g2N

8π2
. (2.4)

For the first two loop orders, one obtains

w(1)
n = W (1)

n , w(2)
n = W (2)

n −
1

2

(

W (1)
n

)2
. (2.5)

The one-loop coefficient w(1)
n was evaluated in Refs. [11, 12], where it was given in terms

of the one-loop n-point MHV amplitude,

w(1)
n =

Γ(1 − 2ε)

Γ2(1 − ε)
m(1)

n = m(1)
n − n

ζ2

2
+ O(ε) , (2.6)

where the amplitude is a sum of one-loop two-mass-easy box functions [30],

m(1)
n =

∑

p,q

F 2me(p, q, P,Q) , (2.7)

where p and q are two external momenta corresponding to two opposite massless legs,

while the two remaining legs P and Q are massive. The two-loop coefficient w(2)
n has been

computed analytically for n = 4 [13] and n = 5 [14] and numerically for n = 6 [16] and

n = 7, 8 [17].

In Ref. [14] it was established that the Wilson loop fulfils a special conformal Ward

identity, whose solution is the BDS ansatz plus, for n ≥ 6, an arbitrary function of the

conformally invariant cross-ratios, defined in Eq. (2.11). Thus, the two-loop coefficient w(2)
n

can be written as

w(2)
n (ε) = f (2)

WL(ε)w(1)
n (2ε) + C(2)

WL + R(2)
n,WL + O(ε) , (2.8)

where the constant is the same as in Eq. (1.2), C(2)
WL = C(2) = −ζ2

2/2, and the function

f (2)
WL(ε) is [13, 17, 31]2,

f (2)
WL(ε) = −ζ2 + 7ζ3ε − 5ζ4ε

2 . (2.9)

With the two-loop coefficient w(2)
n given by Eqs. (2.8) and (2.9) and the two-loop MHV

amplitude given by Eqs. (1.2) and (1.3), the duality between Wilson loops and amplitudes

is expressed by the equality of their remainder functions [17],

R(2)
n,WL = R(2)

n . (2.10)

Defining the conformally invariant cross ratios as,

uij =
x2

ij+1x
2
i+1j

x2
ijx

2
i+1j+1

, (2.11)

2Note that because of the different normalisation between the one-loop amplitude and the Wilson loop

(2.6), f
(2)
WL

differs from the analogous function for the amplitude, given after Eq. (1.2).

– 4 –

[Drummond, Henn, 
Korchemsky, Sokatchev]

Sonntag, 9. Mai 2010



The remainder function
• Cyclic symmetry of the amplitude implies symmetries for 

the remainder function.
➡ For n = 6, the remainder function is completely 

symmetric.

• Multi-collinear limits:

➡ For n = 6, the remainder function vanishes in the two-
particle collinear limits.

• It vanishes in the multi-Regge limit (in the Euclidean 
region).

If we factor out the corresponding tree level amplitude, then the object
(

ANonMHV
n /ANonMHV tree

n

)

(s, u, h)

(Aref
n /Aref tree

n ) (s, ũ, h̃)
. (2.12)

is not only finite but we expect it to be (dual) conformally invariant in view of the
expected dual conformal properties of non-MHV amplitudes [20–22]. Normalisation
of all amplitudes by the tree-level factor also naturally fits with the proposal [23]
that in the strong coupling regime any generic (MHV or NonMHV) amplitude is
the product of the corresponding tree-level amplitude and the helicity-independent
exponential factor involving the same semiclassical action (area) as the one found for
MHV amplitudes in [1]. Of course the Wilson loop dual for non-MHV amplitudes is
not known at present.

In the rest of the paper we will concentrate on the ratio of Wilson loops (2.8) in
N = 4 SYM at large N . In the next section we will define the kinematics for the
continuous families of regular polygons which will be needed for our applications.

A Note on multi-collinear limits

One nice property of the remainder function is its very simple transformation
properties under collinear limits [8]

Rn → Rn−k +Rk+4 (2.13)

for a (k+1)-collinear limit, ie where (k+1) momenta become collinear. This equation
is plotted in figure 1. The first term on the right-hand side is the reduced n − k
polygon emerging in this multi-collinear limit. Meanwhile the second term arises
from the (k+1)-collinear splitting function 7. Note that the latter is present because
the collinear limit is taken after expanding the full Wilson loop in ε (that is the
distance between the k vertices and the dotted line is limited by the UV cutoff.)

It is a nice feature that both terms on the right-hand side are themselves remainder
functions of different ranks. In this multi-collinear limit, the entire set of cross-ratios
of Rn decomposes into the set of cross-ratios for Rn−k and the set of cross-ratios for
Rk+4. These two sets can be most easily determined from figure 1. In particular one
draws all independent u-cross-ratios correspnding to the first polygon on the right-
hand side for the first set, and all independent cross-ratios within the second polygon
for the second set. The first set is independent of the muti-collinear momenta whereas
the second set depends only on the multi-collinear variables (z1, . . . zk+1 and the ratios
of vanishing kinematic invariants.)

7More precisely the part of the splitting function not already contained in the BDS expression.
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How can we compute this function?
• Anastasiou, Brandhuber, Heslop, Khoze, Spence and 

Travaglini worked out the two-loop Wilson loop diagrams:

...

• Each of these diagrams is an integral, similar to a Feynman 
parameter integral.

• Numerical studies of these integrals confirmed all the 
properties of the remainder function.
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How can we compute this function?
• For n = 6, many of the integrals can be computed explicitly, 

but one is particularly ’hard’:

• The integrals do not explicitly depend on conformal ratios.

• But is all this complexity really needed..?

• Could we go to simplified kinematics?

We also set D = 4 − 2εUV = 4 + 2ε where εUV = −ε > 0. The special four-point case
is considered later.

We write this diagram in the most general configuration as9

fH(p1, p2, p3; Q1, Q2, Q3)

:=
Γ(2 − 2εUV)

Γ(1 − εUV)2

∫ 1

0

( 3∏

i=1

dτi

)∫ 1

0

( 3∏

i=1

dαi

)
δ(1 −

3∑

i=1

αi) (α1α2α3)
−εUV

N
D2−2εUV

,

(B.1)

where
D := −α1α2(z1 − z2)

2 − α2α3(z2 − z3)
2 − α1α3(z1 − z3)

2 , (B.2)

and

(z1 − z2)
2 = Q2

3 + 2(p1p2)(1 − τ1)τ2 + 2(Q3p1)(1 − τ1) + 2(Q3p2)τ2 , (B.3)

(z2 − z3)
2 = Q2

1 + 2(p2p3)(1 − τ2)τ3 + 2(Q1p2)(1 − τ2) + 2(Q1p3)τ3 ,

(z3 − z1)
2 = Q2

2 + 2(p3p1)(1 − τ3)τ1 + 2(Q2p3)(1 − τ3) + 2(Q2p1)τ1 .

The original expressions for the zi − zi+1 are

zi − zi+1 = Qi+2 + pi(1 − τi) + pi+1τi+1 , i = 1, 2, 3 . (B.4)

The expression for the numerator N has two kinds of terms. The first three lines
involve τ and α parameters, whereas the remaining three lines involve only the τ
parameters. It is given by

N = 2(p1p2)(p1p3)
[
α1α2(1 − τ1) + α3α1τ1

]

+ 2(p1p2)(p2p3)
[
α2α3(1 − τ2) + α1α2τ2

]

+ 2(p1p3)(p2p3)
[
α3α1(1 − τ3) + α2α3τ3

]

+ 2α1α2

[
2(p1p2)(p3Q3) − (p2p3)(p1Q3) − (p3p1)(p2Q3)

]

+ 2α2α3

[
2(p2p3)(p1Q1) − (p3p1)(p2Q1) − (p1p2)(p3Q1)

]

+ 2α3α1

[
2(p3p1)(p2Q2) − (p1p2)(p3Q2) − (p2p3)(p1Q2)

]
. (B.5)

B.1 Four-point case

The four-point case can be obtained by setting

Q3 = Q1 = 0 , Q2 = p4 = −(p1 + p2 + p3) , (B.6)

9We remind the reader that we will always suppress the common prefactor defined in (4.1) from
the expression of all diagrams.
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An excursion to multi-Regge 
kinematics

• Multi-Regge kinematics are defined by

7.2. The multi-Regge limit 71

of gauge theory amplitudes. The idea is to perform the computation in some simplified kinematics

(in this case the regime of high-energy) where the computation is simpler, and thus gaining some

information on the BDS remainder function in these simplified kinematics. The first chapter of this

part is devoted to the introduction of the high-energy limit for tree-level amplitudes and to the

notations and conventions we use. Along the way we present a novel result for the computation

of certain universal building blocks that appear in this limit, based on the MHV formalism and

an extension of the corresponding result proved for antenna functions in Chapter 5. In Chapter 8

we extend the high-energy limit to amplitudes beyond tree level, and in Chapter 9 we review in

more detail the ABDK/BDS ansatz, and we show what the ansatz becomes in the high-energy

limit. The last two chapters are then concerned with the first analytic computation of the five-point

MSYM amplitude at one and two-loop accuracy, albeit in simplified kinematics, namely those of the

high-energy limit.

7.2 The multi-Regge limit

Let us consider an n-point color-ordered tree-level gluon amplitude, An(1, . . . , n), describing the 2-

to-(n−2) scattering (−p1), (−p2) → p3, . . . , pn. In multi-Regge kinematics [84], the produced gluons

are strongly ordered in rapidity and have comparable transverse momenta,

y3 # y4 # . . . # yn−1 # yn and |p3⊥| $ |p4⊥| $ . . . $ |pn−1⊥| $ |pn⊥|, (7.2)

where p⊥ = px + ipy denotes the complex transverse momentum. In this kinematics, the two-particle

invariants can be written in the approximate form

s ≡ s12 $ |p3⊥||pn⊥|ey3−yn ,

s1i $ −|p3⊥||pi⊥|ey3−yi ,

s2i $ −|pi⊥||pn⊥|eyi−yn ,

sij $ |pi⊥||pj⊥|e|yi−yj | .

(7.3)

It follows then from the kinematics (7.2) that the total scattering energy s is much larger than

any other two-particle invariant, which justifies the identification of the multi-Regge limit with the

high-energy limit. If we label the momenta transferred in the t-channel by

q1 = p1 + pn
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Figure 7.1: Amplitude in multi-Regge kinematics. The green blobs indicate the coefficient functions
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),

V (0)
n−4

(

q2; 4
+, . . . , (n − 1)+; q1

)

=
q∗2⊥ q1⊥

p4⊥

√

x4

xn−1

1

〈45〉 . . . 〈(n − 2)(n − 1)〉 ,

V (0)
n−4

(

q2; 4
−, . . . , (n − 1)−; q1

)

=
[

V (0)
n−4

(

q2; 3
+, . . . , (n − 1)+; q1

)

]∗
,

(7.20)

where we defined

xi =
p+

i

p+
3 + p+

4 + . . . + p+
n−1

. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must
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V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,
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m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)
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• Multi-Regge kinematics

y3 � y4 � y5 � y6

|p3⊥|2 � |p4⊥|2 � |p5⊥|2 � |p6⊥|2
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• In the multi-Regge limit, the 
cross ratios become trivial:
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The same arguments can be repeated for three-loop case: in the three-loop expansion
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knowing the explicit expression of the three-loop Lipatov vertex (5.17), it is easy to see by

substitution that the iterative structure of eqs. (5.8), (5.16) and (5.17) ensures that the six-

point amplitude (4.25) fulfils the three-loop iterative formula (5.14) for n = 6. Because no
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or higher, the three-loop expansion of eq. (3.4) fulfils the three-loop iterative formula (5.14),

and thus the BDS ansatz, for any n. Thus, also the quantity R(3)
n (1.2) vanishes in the

multi-Regge kinematics, for any n. Clearly, the same thing is to occur with the iterative

structure of the l-loop n-gluon amplitude for l ≥ 4. We conclude that R(l)
n vanishes in the

multi-Regge kinematics for any l and n. The l-loop n-gluon amplitudes in the multi-Regge

kinematics are in complete agreement with the BDS ansatz, therefore they are not able to

resolve the violations of the ansatz for n ≥ 6.

In ref. [11, 44] it was argued that the remainder function (1.2) for n = 6 is a function

of the three conformal cross-ratios

u1 =
s12 s45

s345 s456
, u2 =

s23 s56

s234 s456
, u3 =

s34 s61

s234 s345
. (5.18)

Using the notation of section 2 and the results of section B.1, we note that in the multi-

Regge kinematics (4.26) the conformal invariants (5.18) become [45, 46]
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, (5.19)

thus u1 is close to 1, while u2 and u3 are very small and are in fact sub-leading in the

multi-Regge kinematics.

6. Proof of BDS ansatz in multi-Regge kinematics

In the previous section, we derived iterative relations for the three building blocks that occur

in the multi-Regge factorisation of gluonic amplitudes, the Regge trajectory, the coefficient

functions and the Lipatov vertex. We argued that the high-energy prescription implied

that the six-gluon amplitude also satisfies the BDS ansatz (in the restricted kinematics

where the high energy prescription is valid). In this section, we are going to prove that

the BDS ansatz is fully consistent with multi-Regge factorisation. In particular, we show

that, if BDS holds true for four- and five-point amplitudes, then it also holds true for any

n-gluon amplitude (in multi-Regge kinematics).

We start by deriving exponentiated forms for the coefficient functions and the Lipatov

vertex. If the BDS ansatz holds true for the four-point amplitude, then we can immediately

insert the tree- and one-loop four-gluon amplitudes in multi-Regge kinematics
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s
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thus u1 is close to 1, while u2 and u3 are very small and are in fact sub-leading in the
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thus u1 is close to 1, while u2 and u3 are very small and are in fact sub-leading in the
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thus u1 is close to 1, while u2 and u3 are very small and are in fact sub-leading in the

multi-Regge kinematics.
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thus u1 is close to 1, while u2 and u3 are very small and are in fact sub-leading in the

multi-Regge kinematics.
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s

t
C(0)(p1, p4),

m(1)
4 (lε) =2C̄(1)(t, τ, lε) + ᾱ(1)(t, lε) ln

(

−s

τ

)

,
(6.1)
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),

V (0)
n−4

(

q2; 4
+, . . . , (n − 1)+; q1

)

=
q∗2⊥ q1⊥

p4⊥

√

x4

xn−1

1

〈45〉 . . . 〈(n − 2)(n − 1)〉 ,

V (0)
n−4

(

q2; 4
−, . . . , (n − 1)−; q1

)

=
[

V (0)
n−4

(

q2; 3
+, . . . , (n − 1)+; q1

)

]∗
,

(7.20)

where we defined

xi =
p+

i

p+
3 + p+

4 + . . . + p+
n−1

. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)
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and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn , and q2 = −p2 − p3 ,

(7.19)

and ti = q 2
i " −|qi⊥ | 2. The coefficient functions C (0)

appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),
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where we defined
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.
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2 ; 4; q1) = V (0)(q2 ; 4; q1).

(7.22)

In the limit of more restrictive kinematics, say
y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn

(7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4 (q2 ; 4, . . . , n − 1; q1) = V (0)

m−3 (q2 ; 4, . . . ,m; q3) 1
t3

V (0)
n−m−1 (q3 ;m + 1, . . . , n − 1; q1),

(7.24)
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),
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)

]∗
,

(7.20)

where we defined

xi =
p+

i

p+
3 + p+

4 + . . . + p+
n−1

. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),
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where we defined

xi =
p+

i
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n−1

. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,
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t3
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n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),
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where we defined

xi =
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i
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4 + . . . + p+
n−1
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)

• Quasi-multi-Regge kinematics

|p3⊥|2 � |p4⊥|2 � |p5⊥|2 � |p6⊥|2

y3 � y4 � y5 � y6

[Bartels, Lipatov, Vera;
Brower, Nastase, Schnitzer;    
    Del Duca, CD, Glover]

• In the quasi-multi-Regge limit, 
the cross ratios stay generic:

J
H
E
P
0
3
(
2
0
1
0
)
0
9
9

It is easy to see that in this limit the three conformally invariant cross-ratios (2.12) do not

take trivial limiting values [24],

u1 → uQMRK
1 =

s45

(p+
4 + p+

5 )(p−4 + p−5 )
= O(1) ,

u2 → uQMRK
2 =

|p3⊥|2p
+
5 p−6

(|p3⊥ + p4⊥|2 + p+
5 p−4 )(p+

4 + p+
5 )p−6

= O(1) ,

u3 → uQMRK
3 =

|p6⊥|2p
+
3 p−4

p+
3 (p−4 + p−5 )(|p3⊥ + p4⊥|2 + p+

5 p−4 )
= O(1) .

(3.4)

A similar analysis can be carried through for the seven-edged Wilson loop, w(L)
7 . We

have verified that the simplest limit to feature an exact Regge factorisation is the QMRK

of three-of-a-kind along the ladder [27]. In the physical region, the outgoing gluons are

strongly ordered in rapidity, except for a cluster of three along the ladder,

y3 " y4 # y5 # y6 " y7; |p3⊥| # |p4⊥| # |p5⊥| # |p6⊥| # |p7⊥| . (3.5)

In the Euclidean region, the Mandelstam invariants are ordered as follows,

−s12 " −s123,−s345,−s567,−s712,−s34,−s67 "

" −s23,−s45,−s56,−s71,−s234,−s456,−s671 .
(3.6)

Through a parameter λ % 1, the hierarchy above is equivalent to the rescaling

{s123, s345, s567, s712, s34, s67} = O(λ) ,

{s23, s45, s56, s71, s234, s456, s671} = O(λ2) .
(3.7)

Using eq. (2.11), and the fact that x2
ij+1 = si···j , it is easy to see that the seven cross ratios

of the seven-edged Wilson loop do not take trivial limiting values under the rescaling (3.7),

{u14, u25, u36, u47, u51, u62, u73} = O(1) . (3.8)

Thus, the dependence of w(L)
7 on the seven cross ratios is not modified by the QMRK of

three-of-a-kind along the ladder (3.6), and hence w(L)
7 undergoes an exact Regge factorisa-

tion in this limit.

The same pattern unfolds for the eight-edged Wilson loop, w(L)
8 . The simplest limit to

feature an exact Regge factorisation is the QMRK of four-of-a-kind along the ladder [28].

In the physical region, the outgoing gluons are strongly ordered in rapidity, except for a

cluster of four along the ladder,

y3 " y4 # y5 # y6 # y7 " y8; |p3⊥| # |p4⊥| # |p5⊥| # |p6⊥| # |p7⊥| # |p8⊥| . (3.9)

In the Euclidean region, the Mandelstam invariants are ordered as follows,

−s12 " −s1234,−s3456,−s123,−s345,−s678,−s812,−s34,−s78 "

" −s2345,−s4567,−s234,−s456,−s567,−s781,−s23,−s45,−s56,−s67,−s81.
(3.10)
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= O(1) ,

u2 → uQMRK
2 =

|p3⊥|2p
+
5 p−6

(|p3⊥ + p4⊥|2 + p+
5 p−4 )(p+

4 + p+
5 )p−6

= O(1) ,

u3 → uQMRK
3 =

|p6⊥|2p
+
3 p−4

p+
3 (p−4 + p−5 )(|p3⊥ + p4⊥|2 + p+

5 p−4 )
= O(1) .

(3.4)

A similar analysis can be carried through for the seven-edged Wilson loop, w(L)
7 . We

have verified that the simplest limit to feature an exact Regge factorisation is the QMRK

of three-of-a-kind along the ladder [27]. In the physical region, the outgoing gluons are

strongly ordered in rapidity, except for a cluster of three along the ladder,

y3 " y4 # y5 # y6 " y7; |p3⊥| # |p4⊥| # |p5⊥| # |p6⊥| # |p7⊥| . (3.5)

In the Euclidean region, the Mandelstam invariants are ordered as follows,

−s12 " −s123,−s345,−s567,−s712,−s34,−s67 "

" −s23,−s45,−s56,−s71,−s234,−s456,−s671 .
(3.6)

Through a parameter λ % 1, the hierarchy above is equivalent to the rescaling

{s123, s345, s567, s712, s34, s67} = O(λ) ,

{s23, s45, s56, s71, s234, s456, s671} = O(λ2) .
(3.7)

Using eq. (2.11), and the fact that x2
ij+1 = si···j , it is easy to see that the seven cross ratios

of the seven-edged Wilson loop do not take trivial limiting values under the rescaling (3.7),

{u14, u25, u36, u47, u51, u62, u73} = O(1) . (3.8)

Thus, the dependence of w(L)
7 on the seven cross ratios is not modified by the QMRK of

three-of-a-kind along the ladder (3.6), and hence w(L)
7 undergoes an exact Regge factorisa-

tion in this limit.

The same pattern unfolds for the eight-edged Wilson loop, w(L)
8 . The simplest limit to

feature an exact Regge factorisation is the QMRK of four-of-a-kind along the ladder [28].

In the physical region, the outgoing gluons are strongly ordered in rapidity, except for a

cluster of four along the ladder,

y3 " y4 # y5 # y6 # y7 " y8; |p3⊥| # |p4⊥| # |p5⊥| # |p6⊥| # |p7⊥| # |p8⊥| . (3.9)

In the Euclidean region, the Mandelstam invariants are ordered as follows,

−s12 " −s1234,−s3456,−s123,−s345,−s678,−s812,−s34,−s78 "

" −s2345,−s4567,−s234,−s456,−s567,−s781,−s23,−s45,−s56,−s67,−s81.
(3.10)
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Figure 7.1: Amplitude in multi-Regge kinematics. The green blobs indicate the coefficient functions
(impact factors) and the Lipatov vertices describing the emission of gluons along the ladder.

where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),

V (0)
n−4

(

q2; 4
+, . . . , (n − 1)+; q1

)

=
q∗2⊥ q1⊥

p4⊥

√

x4

xn−1

1

〈45〉 . . . 〈(n − 2)(n − 1)〉 ,

V (0)
n−4

(

q2; 4
−, . . . , (n − 1)−; q1

)

=
[

V (0)
n−4

(

q2; 3
+, . . . , (n − 1)+; q1

)

]∗
,

(7.20)

where we defined

xi =
p+

i

p+
3 + p+

4 + . . . + p+
n−1

. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say
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the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn , and q2 = −p2 − p3,

(7.19)

and ti = q 2
i " −|qi⊥|2. The coefficient functions C (0)

appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),
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where we defined
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2 ; 4; q1).

(7.22)

In the limit of more restrictive kinematics, sayy3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn

(7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4 (q2; 4, . . . , n − 1; q1) = V (0)
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2 . The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V
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Note that for n = 5 we recover
the Lipatov vertex defined in Eq. (7.15),

V
(0)
1

(q2; 4; q1) = V
(0) (q2; 4; q1).

(7.22)

In the limit of more restrict
ive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn

(7.23)

the amplitude must factoriz
e accordingly, which implies that the Lipatov vertices

themselves must

factoriz
e,

V
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),
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where we defined
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. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must
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q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),

V (0)
n−4

(

q2; 4
+, . . . , (n − 1)+; q1

)

=
q∗2⊥ q1⊥

p4⊥

√

x4

xn−1

1

〈45〉 . . . 〈(n − 2)(n − 1)〉 ,

V (0)
n−4

(

q2; 4
−, . . . , (n − 1)−; q1

)

=
[

V (0)
n−4

(

q2; 3
+, . . . , (n − 1)+; q1

)

]∗
,

(7.20)

where we defined

xi =
p+

i

p+
3 + p+

4 + . . . + p+
n−1

. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),
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)

]∗
,

(7.20)

where we defined

xi =
p+

i

p+
3 + p+

4 + . . . + p+
n−1

. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)

• The result is in fact even stronger:

• This limit leaves the conformal cross ratios unchanged 
for an arbitrary number of edges.

• This result is in fact true for Wilson loops with an 
arbitrary number of edges and loops!

The (logarithm of the) Wilson-loop is Regge-exact in this 
limit, i.e., it is the same in this special kinematics and in 
arbitrary kinematics

[Del Duca, CD, Smirnov]

y3 � y4 � . . . � yn−1 � yn

|p3⊥|2 � . . . � |pn⊥|2
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Regge-exactness of Wilson loops
• The proof is very simple:

lnWn =
∞�

�=1

f (�)
WL(�) w(1)

n (2�) + C(�)
WL + R(�)

n (uij) +O(�)

Sonntag, 9. Mai 2010



conformal 
ratios are 
invariant.

Regge-exactness of Wilson loops
• The proof is very simple:

lnWn =
∞�

�=1

f (�)
WL(�) w(1)

n (2�) + C(�)
WL + R(�)

n (uij) +O(�)

Sonntag, 9. Mai 2010



conformal 
ratios are 
invariant.

Regge-exactness of Wilson loops
• The proof is very simple:

lnWn =
∞�

�=1

f (�)
WL(�) w(1)

n (2�) + C(�)
WL + R(�)

n (uij)
This leads to M(1)

n = eεγΓ(1 + ε)(Γ(1 − ε)2/Γ(1 − 2ε))M(1)
n,BDDK. On the other hand,

for the Wilson loop, we have6 w(1)
n = eεγΓ(1+ ε)M(1)

n,BDDK. This leads to the following
correspondence between the Wilson loop and the amplitude at one loop,

w(1)
n =

Γ(1 − 2ε)

Γ2(1 − ε)
M(1)

n = (1+ ζ2ε
2)M(1)

n + O(ε) = M(1)
n − n

π2

12
+ O(ε) . (3.12)

At one loop, the four- [15] and five-edged Wilson loops [16] are thus given by

w(1)
4 = − 1

ε2

[(
− s

µ2

)−ε

+

(
− t

µ2

)−ε
]

+
1

2
log2

(s

t

)
+

π2

3
, (3.13)

w(1)
5 =

1

2

5∑

i=1

[

− 1

ε2

(

−t[2]i

µ2

)−ε

− 1

2
ln

(
−t[2]i

−t[3]i

)

ln

(
−t[2]i+1

−t[2]i+2

)

+
π2

12

]

, (3.14)

and at two loops [17, 18]

w(2)
4 = 2

[(
− s

µ2

)−2ε

+

(
− t

µ2

)−2ε
](

π2

48ε2
− 7ζ3

8ε

)
− π2

12
log2

(s

t

)
− π4

24
, (3.15)

w(2)
5 =

5∑

i=1

(

−t[2]i

µ2

)−2ε (
π2

48ε2
− 7ζ3

8ε

)
+

π2

24

5∑

i=1

ln

(
−t[2]i

−t[3]i

)

ln

(
−t[2]i+1

−t[2]i+2

)

− π4

72
.

(3.16)

We note that in (3.15) we have used the results of our two-loop calculation of the four-
point Wilson loop to correct the constant term in the corresponding result of [17].7

We can now uniquely rewrite (3.15) and (3.16) in an ABDK/BDS form as

w(2)
4 (ε) = f (2)

WL(ε) w(1)
4 (2ε) + C(2)

WL , (3.17)

w(2)
5 (ε) = f (2)

WL(ε) w(1)
5 (2ε) + C(2)

WL , (3.18)

where
f (2)

WL(ε) = −ζ2 + 7ζ3 ε − 5ζ4 ε2 , (3.19)

and

C(2)
WL = −1

2
ζ2
2 . (3.20)

The O(1) and O(ε) coefficients of f (2)
WL(ε) had already been determined in [17]. Inter-

estingly, the constant C(2)
WL turns out to be the same as the constant C(2) in (2.5) for

the amplitude.

6In the following formulae we employ the redefinition of the renormalisation scale in (4.3).
7This discrepancy has also been noted independently by Marcus Spradlin, whom we thank for

discussions on this point.

14

[Brandhuber, 
Heslop, 

Travaglini]

+O(�)
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A Recipe to compute Wilson loops
• Step 1:

We write down a Mellin-Barnes representation for each 
diagram, i.e., we replace denominators in the Feynman 
parameter integrals by contour integrals,

L.6. The Mellin-Barnes representation 184

L.6 The Mellin-Barnes representation

The Mellin-Barnes techniques rely on the following identity,

1

(A + B)λ
=

1

Γ(λ)

1

2πi

∫ +i∞

−i∞
dz Γ(−z)Γ(λ + z)

Bz

Aλ+z
. (L.32)

The contour in Eq. (L.32) is chosen in the standard way, i.e. it should separate the poles in Γ(−z)

from the poles in Γ(λ + z). We can apply Eq. (L.32) to the F -polynomial in Eq. (L.14), and break

it up into monomials in the Feynman parameters xi. The integration over the Feynman parameters

can now be easily performed in terms of Γ functions,

∫ 1

0

n
∏

i=1

dxi x
ai−1
i δ(1 − x1 . . . − xn) =

Γ(a1) . . . Γ(an)

Γ(a1 + . . . + an)
. (L.33)

In this way we have eliminated all the Feynman parameter integrals in terms of Mellin-Barnes

integrals, and we obtain a representation equivalent to the Mellin-Barnes representation of the

hypergeometric function, Eq. (I.5).

• This turns the Feynman 
parameter integral into residue 
calculus: 

Resz=−nΓ(z) =
(−1)n

n!
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A Recipe to compute Wilson loops
• Step 2:

We exploit Regge exactness and we only compute the 
leading behavior of each integral in the quasi-multi-Regge 
limit

• The Mellin-Barnes approach is 
very suitable for this! 
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A Recipe to compute Wilson loops
• Step 3:

Iterate the limits: There are six different ways to take the 
limits, corresponding to the six cyclic permutations of the 
external legs.

• Regge-exactness allows us to 
take all six limits at the same 
time!

Leading term in the expansion
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A Recipe to compute Wilson loops
• Step 3:

Iterate the limits: There are six different ways to take the 
limits, corresponding to the six cyclic permutations of the 
external legs.

• Regge-exactness allows us to 
take all six limits at the same 
time!

Leading term in the expansion

in limit1

Leading term in the expansion
in limit 2
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A Recipe to compute Wilson loops

• Step 4:
Sum up the remaining towers of residues:

∞�

n=1

un
i

nk
= Lik(ui)

∞�

n=1

un
i

n
= − ln(1− ui)
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• We applied this recipe to the two-loop six-edged Wilson 
loop.

• In the limit, all integrals are

➡ at most three-fold.
➡ dependent on conformal cross ratios only.

proofs JHEP_069P_0310
but also the five limits obtained from the first one by cyclic permutations of the external

momenta p1, . . . , p6 [17]. For example, the second limit in this series is,

{s45, s61, s234, s123} = O(λ) , {s34, s56, s12, s345} = O(λ2) . (2.24)

While taking these consecutive limits, we keep in each case the leading power asymp-

totics (including all the logarithms), a step which is fully automatized by the code

MBasymptotics [44]. We also apply the code barnesroutines [45] whenever possible to

perform integrations that can be done by corollaries of Barnes lemmas.

Finally, we arrive at a set of multiple MB integrals of a much simpler type than the

original ones. After applying our procedure, all integrals are at most threefold and all

of them are explicitly dependent on the cross ratios only.8 We checked numerically that

the sum of the MB integrals in the QMRK equals the sum of all the original parametric

integrals, the latter being evaluated numerically using FIESTA [46, 47]. In particular,

for the diagram fH(p1, p3, p5; p4, p6, p2), the eightfold integral of eq. (2.18) reduces to a

combination of one threefold integral, 51 twofold integrals and 22 onefold integrals and

a term without any integration left. Note that, after taking the six consecutive limits

described above, this diagram is the only one that involves a threefold integral, all other

contributions to eq. (2.13) involving at most twofold integrals. The threefold contribution

to fH(p1, p3, p5; p4, p6, p2) reads,

−1

4

∫ +i∞

−i∞

∫ +i∞

−i∞

∫ +i∞

−i∞

dz1

2πi

dz2

2πi

dz3

2πi
(z1 z2 + z2 z3 + z3 z1)uz1

1 uz2
2 uz3

3

× Γ (−z1)
2 Γ (−z2)

2 Γ (−z3)
2 Γ (z1 + z2) Γ (z2 + z3) Γ (z3 + z1) ,

(2.25)

where the contours are straight vertical lines such that,

Re(z1) = −1

3
, Re(z2) = −1

4
, Re(z3) = −1

5
. (2.26)

The explicit evaluation of this integral is reviewed in the next section, whereas the full

analytic expression for the remainder function is given in appendix H and is also available

in electronic form at www.arXiv.org.

3 Evaluation of the hard diagram

In this section we review the computation of the MB integrals we derived in the pre-

vious section. Apart from the threefold integral contributing to fH(p1, p3, p5; p4, p6, p2),

eq. (2.25), all the integrals are at most twofold and can be computed by closing the in-

tegration contours at infinity and summing up residues using the standard techniques.

Therefore, in this paper we only concentrate on the case of the hard diagram and present

in detail the analytic computation of the integral in eq. (2.25).

8Note that the coefficients of the integrals do not only depend on the cross ratios, but on logarithms

of Mandelstam invariants as well. This is to be expected since the contribution to w
(2)
6 depends on such

quantities.

– 9 –

The six-point remainder function

Sonntag, 9. Mai 2010



• We still need to compute this threefold integral.

• Naive solution: Close the contours and sum up the 
residues.

proofs JHEP_069P_0310
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∫ +i∞

−i∞

dz1

2πi

dz2

2πi

dz3

2πi
(z1 z2 + z2 z3 + z3 z1)uz1

1 uz2
2 uz3

3

× Γ (−z1)
2 Γ (−z2)

2 Γ (−z3)
2 Γ (z1 + z2) Γ (z2 + z3) Γ (z3 + z1) ,

(2.25)

where the contours are straight vertical lines such that,

Re(z1) = −1

3
, Re(z2) = −1

4
, Re(z3) = −1

5
. (2.26)

The explicit evaluation of this integral is reviewed in the next section, whereas the full

analytic expression for the remainder function is given in appendix H and is also available

in electronic form at www.arXiv.org.

3 Evaluation of the hard diagram

In this section we review the computation of the MB integrals we derived in the pre-

vious section. Apart from the threefold integral contributing to fH(p1, p3, p5; p4, p6, p2),

eq. (2.25), all the integrals are at most twofold and can be computed by closing the in-

tegration contours at infinity and summing up residues using the standard techniques.

Therefore, in this paper we only concentrate on the case of the hard diagram and present

in detail the analytic computation of the integral in eq. (2.25).

8Note that the coefficients of the integrals do not only depend on the cross ratios, but on logarithms

of Mandelstam invariants as well. This is to be expected since the contribution to w
(2)
6 depends on such

quantities.
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∞�

n1=0

∞�

n2=0

∞�

n3=0

�
n1 + n2

n1

� �
n2 + n3

n2

� �
n3 + n1

n3

�
un1

1 un2
2 un3

3 × (harmonic numbers)

• Sums of this type are in general unknown. They are 
related to the Srivastava HB function.

with

f(u1, u2, u3) =
1

(2πi)3

∫ +i∞

−i∞

dz1 dz2 dz3 Γ(−z1)Γ(−z2)Γ(−z3)Γ(1 − z1)Γ(1 − z2)Γ(1 − z3)

Γ(z1 + z2)Γ(z2 + z3)Γ(z3 + z1)uz1

1 uz2

2 uz3

3 ,

F (u1, u2, u3) =
1

(2πi)3

∫ +i∞

−i∞

dz1 dz2 dz3 Γ(−z1)
2 Γ(−z2)

2 Γ(−z3)
2

Γ(z1 + z2)Γ(z2 + z3)Γ(z3 + z1)uz1

1 uz2

2 uz3

3 .

(4)

The derivative approach would be more desirable, because differentiation is always simpler than inte-
gration. However, I was not able to find a way to get the approach I am going to describe to work in
the derivative approach, so I will only describe it in the integral approach, although I then get stuck
with the integral of f . I will comment on where the problems for F later.

Let us first rewrite f by introducing a regulator,

f(u1, u2, u3) = lim
δ→0

fδ(u1, u2, u3), (5)

where

fδ(u1, u2, u3) =

1

(2πi)3

∫ +i∞

−i∞

dz1 dz2 dz3 Γ(δ − z1)Γ(δ − z2)Γ(δ − z3)Γ(1 − δ − z1)Γ(1 − δ − z2)Γ(1 − δ − z3)

Γ(z1 + z2)Γ(z2 + z3)Γ(z3 + z1)uz1

1 uz2

2 uz3

3 ,

(6)

Closing contours to the right and taking residues, we find1,

fδ(u1, u2, u3) =

u1−δ
2 u1−δ

3 u1−δ
1 Γ(2 − 2δ)3Γ(2δ − 1)3HB (2 − 2δ, 2 − 2δ, 2 − 2δ; 2 − 2δ, 2 − 2δ, 2 − 2δ; u1, u3, u2)

+ uδ
2u

1−δ
3 u1−δ

1 Γ(1 − 2δ)Γ(2 − 2δ)Γ(2δ − 1)2HB (1, 1, 2 − 2δ; 2 − 2δ, 2δ, 2− 2δ; u1, u3, u2)

+ u1−δ
2 uδ

3u
1−δ
1 Γ(1 − 2δ)Γ(2 − 2δ)Γ(2δ − 1)2HB (2 − 2δ, 1, 1; 2− 2δ, 2 − 2δ, 2δ; u1, u3, u2)

+ uδ
2u

δ
3u

1−δ
1 Γ(1 − 2δ)2Γ(2δ)Γ(2δ − 1)HB (1, 2δ, 1; 2− 2δ, 2δ, 2δ; u1, u3, u2)

+ u1−δ
2 u1−δ

3 uδ
1Γ(1 − 2δ)Γ(2 − 2δ)Γ(2δ − 1)2HB (1, 2 − 2δ, 1; 2δ, 2− 2δ, 2− 2δ; u1, u3, u2)

+ uδ
2u

1−δ
3 uδ

1Γ(1 − 2δ)2Γ(2δ)Γ(2δ − 1)HB (2δ, 1, 1; 2δ, 2δ, 2− 2δ; u1, u3, u2)

+ u1−δ
2 uδ

3u
δ
1Γ(1 − 2δ)2Γ(2δ)Γ(2δ − 1)HB (1, 1, 2δ; 2δ, 2− 2δ, 2δ; u1, u3, u2)

+ uδ
2u

δ
3u

δ
1Γ(1 − 2δ)3Γ(2δ)3HB (2δ, 2δ, 2δ; 2δ, 2δ, 2δ; u1, u3, u2) ,

(7)

where HB denotes the Srivastava HB function2,

HB(a, b, c; d, e, f ; x, y, z) =
∞
∑

n1=0

∞
∑

n2=0

∞
∑

n3=0

(a)n1+n2
(b)n2+n3

(c)n3+n1

(d)n1
(e)n2

(f)n3

xn1

n1!

yn2

n2!

zn3

n3!
. (8)

1Note that again we only concentrate on the towers of residues, i.e., we exclude again the isolated poles coming from
Γ(zi + zj).

2See Exton, Multiple Hypergeometric Functions and Applications, p. 74.

3

The six-point remainder function

Sonntag, 9. Mai 2010



• We can turn the MB integrals into Euler integrals

proofs JHEP_069P_0310

but also the five limits obtained from the first one by cyclic permutations of the external

momenta p1, . . . , p6 [17]. For example, the second limit in this series is,

{s45, s61, s234, s123} = O(λ) , {s34, s56, s12, s345} = O(λ2) . (2.24)

While taking these consecutive limits, we keep in each case the leading power asymp-

totics (including all the logarithms), a step which is fully automatized by the code

MBasymptotics [44]. We also apply the code barnesroutines [45] whenever possible to

perform integrations that can be done by corollaries of Barnes lemmas.

Finally, we arrive at a set of multiple MB integrals of a much simpler type than the

original ones. After applying our procedure, all integrals are at most threefold and all

of them are explicitly dependent on the cross ratios only.8 We checked numerically that

the sum of the MB integrals in the QMRK equals the sum of all the original parametric

integrals, the latter being evaluated numerically using FIESTA [46, 47]. In particular,

for the diagram fH(p1, p3, p5; p4, p6, p2), the eightfold integral of eq. (2.18) reduces to a

combination of one threefold integral, 51 twofold integrals and 22 onefold integrals and

a term without any integration left. Note that, after taking the six consecutive limits

described above, this diagram is the only one that involves a threefold integral, all other

contributions to eq. (2.13) involving at most twofold integrals. The threefold contribution

to fH(p1, p3, p5; p4, p6, p2) reads,

−1

4

∫ +i∞

−i∞

∫ +i∞

−i∞

∫ +i∞

−i∞

dz1

2πi

dz2

2πi

dz3

2πi
(z1 z2 + z2 z3 + z3 z1)uz1

1 uz2
2 uz3

3

× Γ (−z1)
2 Γ (−z2)

2 Γ (−z3)
2 Γ (z1 + z2) Γ (z2 + z3) Γ (z3 + z1) ,

(2.25)

where the contours are straight vertical lines such that,

Re(z1) = −1

3
, Re(z2) = −1

4
, Re(z3) = −1

5
. (2.26)

The explicit evaluation of this integral is reviewed in the next section, whereas the full

analytic expression for the remainder function is given in appendix H and is also available

in electronic form at www.arXiv.org.

3 Evaluation of the hard diagram

In this section we review the computation of the MB integrals we derived in the pre-

vious section. Apart from the threefold integral contributing to fH(p1, p3, p5; p4, p6, p2),

eq. (2.25), all the integrals are at most twofold and can be computed by closing the in-

tegration contours at infinity and summing up residues using the standard techniques.

Therefore, in this paper we only concentrate on the case of the hard diagram and present

in detail the analytic computation of the integral in eq. (2.25).

8Note that the coefficients of the integrals do not only depend on the cross ratios, but on logarithms

of Mandelstam invariants as well. This is to be expected since the contribution to w
(2)
6 depends on such

quantities.

– 9 –

proofs JHEP_069P_0310
residues Rj(u1, u2, u3) is discussed in appendix C. We start by writing F̃ (u1, u2, u3) as the

integral of the derivative,

F̃ (u1, u2, u3) = F̃ (u1, u2, 0) +

∫ u3

0
du

∂

∂u
F̃ (u1, u2, u) . (3.8)

The value for u3 = 0 can be easily obtained by expanding around small values of u3 using

MBasymptotics. We find,

F̃ (u1, u2, 0) = 0 . (3.9)

Next, we follow the procedure used in ref. [5] and we replace the MB integrations over z1,

z2 and z3 by Euler integrations using the formula (see, e.g., ref. [41]),
∫ +i∞

−i∞

dz

2πi
Γ(−z1)Γ(c − z1)Γ(b + z1)Γ(c + z1)Xz1

= Γ(a)Γ(b + c)

∫ 1

0
dv vb−1 (1 − v)a+c−1 (1 − (1 − X)v)−a .

(3.10)

This leaves us with a fourfold Euler integral,

F̃ (u1, u2, u3) =

∫ 1

0
dv1

∫ 1

0
dv2

∫ 1

0
dv3

∫ u3

0
du (1 − (1 − u1) v1)

−1

×
(

1 − v2

(

1 − u2 (1 − v1)

1 − (1 − u1) v1

))−1

(1 − v3 (1 − u v1 v2))
−1 .

(3.11)

Some comments are in order: Firstly, eq. (3.10) is only valid if the contour separates

the poles in Γ(. . . − zi) from the poles in Γ(. . . + zi). It is easy to observe that our

contours, eq. (2.26), fulfill this requirement. Secondly, we tacitly exchanged the order

of the integrations in deriving eq. (3.11). We checked numerically that this operation is

allowed in the present case.

The integrals over u and v3 in eq. (3.11) can be done very easily, resulting in the

following twofold integral,

F̃ (u1, u2, u3) = −
∫ 1

0
dv1

∫ 1

0
dv2 v−1

1 v−1
2

(
π2

6
− Li2 (1 − v1v2u3)

)

× (−u2v2 + v1 (u1(v2 − 1) + (u2 − 1)v2 + 1) + v2 − 1)−1 .

(3.12)

The remaining twofold integral can be computed in terms of Goncharov multiple polylog-

arithms [48, 49], defined recursively by,

G(a, #w; z) =

∫ z

0

dt

t − a
G(#w; t) , G(a; z) = ln

(

1 − z

a

)

. (3.13)

If all indices are zero we define

G(#0n; z) =

∫ z

1

dt

t
G(#0n−1; t) =

1

n!
lnn z. (3.14)

In particular cases the Goncharov polylogarithms can be expressed in terms of ordinary

logarithms and polylogarithms, e.g.,

G(#an; z) =
1

n!
lnn

(

1 − z

a

)

, G(#0n−1, a; z) = −Lin
(z

a

)

. (3.15)
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• The hard diagram then becomes
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residues Rj(u1, u2, u3) is discussed in appendix C. We start by writing F̃ (u1, u2, u3) as the

integral of the derivative,

F̃ (u1, u2, u3) = F̃ (u1, u2, 0) +

∫ u3

0
du

∂

∂u
F̃ (u1, u2, u) . (3.8)

The value for u3 = 0 can be easily obtained by expanding around small values of u3 using

MBasymptotics. We find,

F̃ (u1, u2, 0) = 0 . (3.9)

Next, we follow the procedure used in ref. [5] and we replace the MB integrations over z1,

z2 and z3 by Euler integrations using the formula (see, e.g., ref. [41]),
∫ +i∞

−i∞

dz

2πi
Γ(−z1)Γ(c − z1)Γ(b + z1)Γ(c + z1)Xz1

= Γ(a)Γ(b + c)

∫ 1

0
dv vb−1 (1 − v)a+c−1 (1 − (1 − X)v)−a .

(3.10)

This leaves us with a fourfold Euler integral,

F̃ (u1, u2, u3) =

∫ 1

0
dv1

∫ 1

0
dv2

∫ 1

0
dv3

∫ u3

0
du (1 − (1 − u1) v1)

−1

×
(

1 − v2

(

1 − u2 (1 − v1)

1 − (1 − u1) v1

))−1

(1 − v3 (1 − u v1 v2))
−1 .

(3.11)

Some comments are in order: Firstly, eq. (3.10) is only valid if the contour separates

the poles in Γ(. . . − zi) from the poles in Γ(. . . + zi). It is easy to observe that our

contours, eq. (2.26), fulfill this requirement. Secondly, we tacitly exchanged the order

of the integrations in deriving eq. (3.11). We checked numerically that this operation is

allowed in the present case.

The integrals over u and v3 in eq. (3.11) can be done very easily, resulting in the

following twofold integral,

F̃ (u1, u2, u3) = −
∫ 1

0
dv1

∫ 1

0
dv2 v−1

1 v−1
2

(
π2

6
− Li2 (1 − v1v2u3)

)

× (−u2v2 + v1 (u1(v2 − 1) + (u2 − 1)v2 + 1) + v2 − 1)−1 .

(3.12)

The remaining twofold integral can be computed in terms of Goncharov multiple polylog-

arithms [48, 49], defined recursively by,

G(a, #w; z) =

∫ z

0

dt

t − a
G(#w; t) , G(a; z) = ln

(

1 − z

a

)

. (3.13)

If all indices are zero we define

G(#0n; z) =

∫ z

1

dt

t
G(#0n−1; t) =

1

n!
lnn z. (3.14)

In particular cases the Goncharov polylogarithms can be expressed in terms of ordinary

logarithms and polylogarithms, e.g.,

G(#an; z) =
1

n!
lnn

(

1 − z

a

)

, G(#0n−1, a; z) = −Lin
(z

a

)

. (3.15)
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Multiple polylogarithms
• The result is completely expressed in terms Goncharov’s 

multiple polylogarithm,

explicitly dependent on the conformal cross ratios only3. We checked numerically that the

sum of the Mellin-Barnes integrals in the QMRK is equal to the sum of all the original

parametric integrals, the latter being evaluated numerically using FIESTA [40].

The resulting Mellin-Barnes integrals are then evaluated by directly closing contours

and summing up residues or by exchanging a Mellin-Barnes integration with an integral of

Euler type. The infinite sums which appear in the intermediate steps of the computation

are typically generalised harmonic sums [41, 42] as well as multiple binomial sums [43, 44].

The convergence of the series requires the conformal cross ratios to be less than 1, and

in the following we concentrate on this kinematic region, within the Euclidean region.

Details on the explicit computation of the integrals will be presented in a forthcoming

publication [45]. Here it suffices to say that, except for the contribution coming from

the hard diagram with six light-like edges, all the integrals can be expressed in terms of

harmonic polylogarithms [46] in one conformal cross ratio. In turn, the six-edged hard

diagram constitutes the bulk of the final result, and can be written as a linear combination

of Goncharov’s multiple polylogarithms [47], whose arguments are functions of conformal

cross ratios. These polylogarithms are defined by the iterated integration,

G(!w; z) =

∫ z

0

dt

t − a
G(!w′; t) and G(!0n; z) =

1

n!
lnn z , (4.2)

where we define !w = (a, !w′), and for z = 1 they are manifestly real, if all the elements

in the weight vector !w are either greater than 1 or negative. The number of elements of

!w is called the (transcendental) weight of G(!w; z). The polylogarithms we obtain can be

divided into several classes, corresponding to the elements wi of the weight vector,

1. wi = 1/uj , 1/(1 − uj), (1 − uj)/(1 − uj − uk).

It is easy to see that in this case wi > 1 or wi < 0, for 0 < ui, uj < 1.

2. wi = 1/(ui + uj).

In this case wi could be smaller than 1, i.e., the polylogarithms can develop an

imaginary part. However, we checked numerically that the imaginary parts cancel in

the final answer.

3. wi = 1/u(±)
jkl , 1/v

(±)
jkl , where we define

u(±)
jkl =

1 − uj − uk + ul ±
√

(uj + uk − ul − 1)2 − 4 (1 − uj) (1 − uk) ul

2 (1 − uj) ul
,

v(±)
jkl =

uk − ul ±
√

−4ujukul + 2ukul + u2
k + u2

l

2 (1 − uj) uk
.

(4.3)

3Note however that the coefficients of the integrals do not only depend on the conformal cross ratios,

but on logarithms of Mandelstam invariants. This is to be expected since the BDS contribution to w
(2)
6

depends on such quantities.
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Lin(z) =
� z

0

dt

t
Lin−1(t)

• Multiple polylogarithms form both a shuffle and a quasi-
shuffle algebra, and hence also a Hopf algebra.

• Numerical evaluation is very fast and easy (Mathematica 
or GiNaC).
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Multiple polylogarithms
• In some cases, Goncharov’s polylogarithm can be reduced 

to simpler functions

proofs JHEP_069P_0310

Furthermore, up to weight two, Goncharov polylogarithms can be completely expressed

in terms of ordinary logarithms and dilogarithms. In particular, if a and b are non zero,

we find,

G(a, b; z) = Li2

(
b − z

b − a

)

− Li2

(
b

b − a

)

+ ln
(

1 − z

b

)

ln

(
z − a

b − a

)

. (B.13)

More special values of Goncharov multiple polylogarithms are presented in appendix F

and G.

B.3 Reduction of polylogarithms of the form G(!w(z); 1)

In this section we present the algorithm used to express a polylogarithm of the form

G(!w(z); 1), where w is a rational function of z, as a linear combination of polylogarithms

of the form G(!w′; z), where !w′ is independent of z. This algorithm is a generalisation of

the corresponding algorithms described in refs. [5, 57, 58]. We start by writing G(!w(z); 1)

as the integral of the derivative,

G(!w(z); 1) = G(!w(z0); 1) +

∫ z

z0

dt
∂

∂t
G(!w(t); 1) , (B.14)

where z0 is arbitrary (provided that G(!w(z0); 1) exists). We now carry out the derivative

on the integral representation of G(!w(z); 1),

G(!w(z); 1) = G(!w(z0); 1)+

∫ z

z0

dt
w

∑

i=1

∫ 1

0
Ω(w1(t))◦. . .◦

∂

∂t
Ω(wi(t))◦. . .◦Ω(ww(t)) , (B.15)

with
∂

∂t
Ω(wi(t)) =

dti
(ti − wi(t))2

∂

∂t
wi(t). (B.16)

The integrals over the ti variables are easily performed using partial fractioning and inte-

gration by parts. At the end of this procedure, we are left with an integral over t whose

integrand is a linear combination (with rational coefficients) of Goncharov polylogarithms

of the form G(!w1(t); 1), with w1 = w−1. At this point we know recursively how to express

these functions in terms of polylogarithms of the form G(!w′
1; t) where !w′

1 is independent of

t. The last integration is now done using partial fractioning and integration by parts, and

since the upper integration limit is z, we end up with polylogarithms of the form G(!w′; z).

C Evaluation of the additional residues of F (u1, u2, u3)

C.1 Evaluation of R−1(u1, u2, u3)

In this appendix we give the details on the computations of the additional residues defined in

eq. (3.6). For convenience let us start by introducing the definition that Rj(u1, u2, u3; z1, z2)

is the integrand of Rj(u1, u2, u3), i.e., we define,

Rj(u1, u2, u3) ≡
∫ +i∞

−i∞

∫ +i∞

−i∞

dz1

2πi

dz2

2πi
Rj(u1, u2, u3; z1, z2) . (C.1)
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+ 18H

(

0, 0, 0,−1;
1

a

)

− 18H

(

0, 0, 0, 1;
1

a

)

+ 4H

(

0, 0, 1,−1;
1

a

)

− 4H

(

0, 0, 1, 1;
1

a

)

+ 6H

(

0, 1, 0,−1;
1

a

)

− 5H

(

0, 1, 0, 1;
1

a

)

+ 8H

(

1, 0, 0,−1;
1

a

)

− 6H

(

1, 0, 0, 1;
1

a

)

G
(

0, a2,−a, 1; 1
)

= −1

6
π2H

(

−1,−1;
1

a

)

− 1

6
π2H

(

0,−1;
1

a

)

(G.119)

+
1

6
π2H

(

0, 1;
1

a

)

− 2H

(

−1,−1, 0, 1;
1

a

)

+ H

(

−1, 0,−1,−1;
1

a

)

− 2H

(

−1, 0,−1, 1;
1

a

)

− 2H

(

−1, 0, 0,−1;
1

a

)

+ 4H

(

−1, 0, 0, 1;
1

a

)

− 2H

(

−1, 0, 1,−1;
1

a

)

+ 2H

(

0,−1,−1,−1;
1

a

)

− 2H

(

0,−1,−1, 1;
1

a

)

− 5H

(

0,−1, 0,−1;
1

a

)

+ 6H

(

0,−1, 0, 1;
1

a

)

− 2H

(

0,−1, 1,−1;
1

a

)

− 8H

(

0, 0,−1,−1;
1

a

)

+ 8H

(

0, 0,−1, 1;
1

a

)

+ 18H

(

0, 0, 0,−1;
1

a

)

− 18H

(

0, 0, 0, 1;
1

a

)

+ 8H

(

0, 0, 1,−1;
1

a

)

− 4H

(

0, 0, 1, 1;
1

a

)

− 2H

(

0, 1,−1,−1;
1

a

)

+ 4H

(

0, 1, 0,−1;
1

a

)

− 2H

(

0, 1, 0, 1;
1

a

)

G
(

0, a2, a, 1; 1
)

= −1

6
π2H

(

0,−1;
1

a

)

+
1

6
π2H

(

0, 1;
1

a

)

− 1

6
π2H

(

1, 1;
1

a

)

(G.120)

− 2H

(

0,−1, 0,−1;
1

a

)

+ 4H

(

0,−1, 0, 1;
1

a

)

+ 2H

(

0,−1, 1, 1;
1

a

)

− 4H

(

0, 0,−1,−1;
1

a

)

+ 8H

(

0, 0,−1, 1;
1

a

)

+ 18H

(

0, 0, 0,−1;
1

a

)

− 18H

(

0, 0, 0, 1;
1

a

)

+ 8H

(

0, 0, 1,−1;
1

a

)

− 8H

(

0, 0, 1, 1;
1

a

)

+ 2H

(

0, 1,−1, 1;
1

a

)

+ 6H

(

0, 1, 0,−1;
1

a

)

− 5H

(

0, 1, 0, 1;
1

a

)

+ 2H

(

0, 1, 1,−1;
1

a

)

− 2H

(

0, 1, 1, 1;
1

a

)

+ 2H

(

1, 0,−1, 1;
1

a

)

+ 4H

(

1, 0, 0,−1;
1

a

)

− 2H

(

1, 0, 0, 1;
1

a

)

+ 2H

(

1, 0, 1,−1;
1

a

)

− H

(

1, 0, 1, 1;
1

a

)

+ 2H

(

1, 1, 0,−1;
1

a

)

G
(

0, a2, a2,−a; 1
)

= −H

(

−1,−1, 0,−1;
1

a

)

+ 2H

(

−1,−1, 0, 1;
1

a

)
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+ 4H

(
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1

a

)
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(

−1, 0, 0, 1;
1

a

)
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(
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(
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(
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)

+ 4H

(

0, 0,−1, 1;
1

a

)
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+ 18H

(

0, 0, 0,−1;
1

a

)

− 18H

(
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1

a

)

+ 4H

(

0, 0, 1,−1;
1

a

)

− 4H

(
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(

0, 1, 0, 1;
1

a

)
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(

1, 0, 0,−1;
1
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)

− 6H

(
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1

a

)

G
(

0, a2,−a, 1; 1
)

= −1

6
π2H

(

−1,−1;
1

a

)

− 1

6
π2H

(

0,−1;
1

a

)

(G.119)

+
1

6
π2H

(

0, 1;
1

a

)

− 2H

(

−1,−1, 0, 1;
1

a
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+ H

(
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1
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− 2H
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−1, 0,−1, 1;
1

a

)
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−1, 0, 0,−1;
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−1, 0, 0, 1;
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−1, 0, 1,−1;
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(
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(

0,−1,−1, 1;
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)
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0,−1, 0,−1;
1

a

)

+ 6H

(

0,−1, 0, 1;
1
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)

− 2H

(

0,−1, 1,−1;
1

a

)

− 8H

(

0, 0,−1,−1;
1

a

)

+ 8H

(

0, 0,−1, 1;
1

a

)

+ 18H

(

0, 0, 0,−1;
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a

)
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(
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a
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(
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a

)
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(
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a

)
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1
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)
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(
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1

a

)
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(

0, 1, 0, 1;
1

a

)

G
(

0, a2, a, 1; 1
)

= −1

6
π2H

(

0,−1;
1

a

)

+
1

6
π2H

(

0, 1;
1

a

)

− 1

6
π2H

(

1, 1;
1

a

)

(G.120)

− 2H

(

0,−1, 0,−1;
1

a

)

+ 4H

(

0,−1, 0, 1;
1

a

)

+ 2H

(

0,−1, 1, 1;
1

a

)
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(
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a
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+ 8H

(
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1
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)
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(

0, 0, 0,−1;
1

a

)

− 18H

(

0, 0, 0, 1;
1

a

)

+ 8H

(

0, 0, 1,−1;
1

a

)

− 8H

(

0, 0, 1, 1;
1

a

)

+ 2H

(

0, 1,−1, 1;
1

a

)

+ 6H

(

0, 1, 0,−1;
1

a

)

− 5H

(

0, 1, 0, 1;
1

a

)

+ 2H

(

0, 1, 1,−1;
1

a

)

− 2H

(

0, 1, 1, 1;
1

a

)

+ 2H

(

1, 0,−1, 1;
1

a

)

+ 4H

(

1, 0, 0,−1;
1

a

)

− 2H

(

1, 0, 0, 1;
1

a

)

+ 2H

(

1, 0, 1,−1;
1

a

)

− H

(

1, 0, 1, 1;
1

a

)

+ 2H

(

1, 1, 0,−1;
1

a

)

G
(

0, a2, a2,−a; 1
)

= −H

(

−1,−1, 0,−1;
1

a

)

+ 2H

(

−1,−1, 0, 1;
1

a

)

(G.121)

+ 4H

(

−1, 0, 0,−1;
1

a

)

− 4H

(

−1, 0, 0, 1;
1

a

)

+ 2H

(

−1, 0, 1, 1;
1

a

)

+ 2H

(

0,−1,−1,−1;
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)

− 2H

(
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)

− 2H

(
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)
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(

0,−1, 1, 1;
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)

− 4H

(
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1

a

)

+ 4H

(

0, 0,−1, 1;
1

a

)
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The six-point remainder function
• Some of polylogarithms depend on complicated 

arguments:

explicitly dependent on the conformal cross ratios only3. We checked numerically that the

sum of the Mellin-Barnes integrals in the QMRK is equal to the sum of all the original

parametric integrals, the latter being evaluated numerically using FIESTA [40].

The resulting Mellin-Barnes integrals are then evaluated by directly closing contours

and summing up residues or by exchanging a Mellin-Barnes integration with an integral of

Euler type. The infinite sums which appear in the intermediate steps of the computation

are typically generalised harmonic sums [41, 42] as well as multiple binomial sums [43, 44].

The convergence of the series requires the conformal cross ratios to be less than 1, and

in the following we concentrate on this kinematic region, within the Euclidean region.

Details on the explicit computation of the integrals will be presented in a forthcoming

publication [45]. Here it suffices to say that, except for the contribution coming from

the hard diagram with six light-like edges, all the integrals can be expressed in terms of

harmonic polylogarithms [46] in one conformal cross ratio. In turn, the six-edged hard

diagram constitutes the bulk of the final result, and can be written as a linear combination

of Goncharov’s multiple polylogarithms [47], whose arguments are functions of conformal

cross ratios. These polylogarithms are defined by the iterated integration,

G(!w; z) =

∫ z

0

dt

t − a
G(!w′; t) and G(!0n; z) =

1

n!
lnn z , (4.2)

where we define !w = (a, !w′), and for z = 1 they are manifestly real, if all the elements

in the weight vector !w are either greater than 1 or negative. The number of elements of

!w is called the (transcendental) weight of G(!w; z). The polylogarithms we obtain can be

divided into several classes, corresponding to the elements wi of the weight vector,

1. wi = 1/uj , 1/(1 − uj), (1 − uj)/(1 − uj − uk).

It is easy to see that in this case wi > 1 or wi < 0, for 0 < ui, uj < 1.

2. wi = 1/(ui + uj).

In this case wi could be smaller than 1, i.e., the polylogarithms can develop an

imaginary part. However, we checked numerically that the imaginary parts cancel in

the final answer.

3. wi = 1/u(±)
jkl , 1/v

(±)
jkl , where we define

u(±)
jkl =

1 − uj − uk + ul ±
√

(uj + uk − ul − 1)2 − 4 (1 − uj) (1 − uk) ul

2 (1 − uj) ul
,

v(±)
jkl =

uk − ul ±
√

−4ujukul + 2ukul + u2
k + u2

l

2 (1 − uj) uk
.

(4.3)

3Note however that the coefficients of the integrals do not only depend on the conformal cross ratios,

but on logarithms of Mandelstam invariants. This is to be expected since the BDS contribution to w
(2)
6

depends on such quantities.
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• For some values of the u’s, the square roots can become 
complex.

• They however always come in pairs such that the full 
result is real.

proofs JHEP_069P_0310

always come in pairs such that the sum of the two contributions is real. To emphasize this

property, we introduce the following notation,

G(. . . , uijk, . . . ; z) = G
(

. . . , u(+)
ijk , . . . ; z

)

+ G
(

. . . , u(−)
ijk , . . . ; z

)

. (3.23)

Note that this definition follows the same spirit as the definition of Clausen’s function,

defined as the real or imaginary parts of the ordinary polylogarithms,

Cln(θ) =

{
1
2

[

Lin(eiθ) + Lin(e−iθ)
]

, n odd,
1
2i

[

Lin(eiθ) − Lin(e−iθ)
]

, n even.
(3.24)

All the integrations can now be done very easily using eq. (3.13), and we find,

F̃ (u1, u2, u3) =
(3.25)

G (0;u2)G (0;u3)G

(

0,
u2 − 1

u1 + u2 − 1
; 1

)

− G (1, 0;u2) G

(

0,
u2 − 1

u1 + u2 − 1
; 1

)

+

1

6
π2G

(

0,
u2 − 1

u1 + u2 − 1
; 1

)

− G (0;u2)G (0;u3) G

(
1

1 − u1
,

u2 − 1

u1 + u2 − 1
; 1

)

+

G (1, 0;u2)G

(
1

1 − u1
,

u2 − 1

u1 + u2 − 1
; 1

)

− 1

6
π2G

(
1

1 − u1
,

u2 − 1

u1 + u2 − 1
; 1

)

−

G (0;u3)G

(

0, 1,
1

u3
; 1

)

+ G (0;u2) G

(

0,
u2 − 1

u1 + u2 − 1
, 0; 1

)

+

G (0;u3)G

(

0,
u2 − 1

u1 + u2 − 1
, 1; 1

)

+ G (0;u2) G

(

0,
u2 − 1

u1 + u2 − 1
,

1

1 − u1
; 1

)

−

G (0;u3)G

(

0,
u2 − 1

u1 + u2 − 1
,

1

1 − u1
; 1

)

− G (0;u2)G

(

0,
u2 − 1

u1 + u2 − 1
,

u2 − 1

u1 + u2 − 1
; 1

)

+

G (0;u3)G

(
1

1 − u1
, 1,

1

u3
; 1

)

− G (0;u2)G

(
1

1 − u1
,

u2 − 1

u1 + u2 − 1
, 0; 1

)

−

G (0;u3)G

(
1

1 − u1
,

u2 − 1

u1 + u2 − 1
, 1; 1

)

− G (0;u2)G

(
1

1 − u1
,

u2 − 1

u1 + u2 − 1
,

1

1 − u1
; 1

)

+

G (0;u3)G

(
1

1 − u1
,

u2 − 1

u1 + u2 − 1
,

1

1 − u1
; 1

)

+

G (0;u2)G

(
1

1 − u1
,

u2 − 1

u1 + u2 − 1
,

u2 − 1

u1 + u2 − 1
; 1

)

− G

(

0, 1,
1

u3
, 0; 1

)

+

G

(

0,
u2 − 1

u1 + u2 − 1
, 0, 1; 1

)

− G

(

0,
u2 − 1

u1 + u2 − 1
, 0,

1

1 − u1
; 1

)

+

G

(

0,
u2 − 1

u1 + u2 − 1
, 1, 0; 1

)

− G

(

0,
u2 − 1

u1 + u2 − 1
,

1

1 − u1
, 0; 1

)

+

G

(

0,
u2 − 1

u1 + u2 − 1
,

1

1 − u1
, 1; 1

)

− G

(

0,
u2 − 1

u1 + u2 − 1
,

1

1 − u1
,

1

1 − u1
; 1

)

−

G

(

0,
u2 − 1

u1 + u2 − 1
,

u2 − 1

u1 + u2 − 1
, 1; 1

)

+ G

(

0,
u2 − 1

u1 + u2 − 1
,

u2 − 1

u1 + u2 − 1
,

1

1 − u1
; 1

)

+

G

(
1

1 − u1
, 1,

1

u3
, 0; 1

)

− G

(
1

1 − u1
,

u2 − 1

u1 + u2 − 1
, 0, 1; 1

)

+

G

(
1

1 − u1
,

u2 − 1

u1 + u2 − 1
, 0,

1

1 − u1
; 1

)

− G

(
1

1 − u1
,

u2 − 1

u1 + u2 − 1
, 1, 0; 1

)

+
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1

4
G

(
1

u3
, 0,

1

u1
,

1

u1 + u3
; 1

)

− 1

4
G

(
1

u3
, 0,

1

u2
,

1

u2 + u3
; 1

)

− 1

4
G

(
1

u3
, 0,

1

u3
,

1

u1 + u3
; 1

)

−

1

4
G

(
1

u3
, 0,

1

u3
,

1

u2 + u3
; 1

)

− 1

24
π2G

(
1

1 − u1
, u123; 1

)

+
1

8
π2G

(
1

1 − u1
, v123; 1

)

+

1

8
π2G

(
1

1 − u1
, v132; 1

)

− 1

24
π2G

(
1

1 − u2
, u231; 1

)

+
1

8
π2G

(
1

1 − u2
, v213; 1

)

+

1

8
π2G

(
1

1 − u2
, v231; 1

)

− 1

24
π2G

(
1

1 − u3
, u312; 1

)

+
1

8
π2G

(
1

1 − u3
, v312; 1

)

+

1

8
π2G

(
1

1 − u3
, v321; 1

)

− 1

4
G

(

0, 0,
1

1 − u1
, v123; 1

)

− 1

4
G

(

0, 0,
1

1 − u1
, v132; 1

)

−

1

4
G

(

0, 0,
1

1 − u2
, v213; 1

)

− 1

4
G

(

0, 0,
1

1 − u2
, v231; 1

)

− 1

4
G

(

0, 0,
1

1 − u3
, v312; 1

)

−

1

4
G

(

0, 0,
1

1 − u3
, v321; 1

)

− 1

4
G

(

0, 0, v123,
1

1 − u1
; 1

)

+ G (0, 0, v132, 0; 1) −

1

4
G

(

0, 0, v132,
1

1 − u1
; 1

)

+ G (0, 0, v213, 0; 1) −
1

4
G

(

0, 0, v213,
1

1 − u2
; 1

)

−

1

4
G

(

0, 0, v231,
1

1 − u2
; 1

)

− 1

4
G

(

0, 0, v312,
1

1 − u3
; 1

)

+ G (0, 0, v321, 0; 1) −

1

4
G

(

0, 0, v321,
1

1 − u3
; 1

)

− 1

4
G

(

0,
1

1 − u1
, 0, v123; 1

)

− 1

4
G

(

0,
1

1 − u1
, 0, v132; 1

)

−

1

2
G

(

0,
1

1 − u1
,

1

1 − u1
, v123; 1

)

− 1

2
G

(

0,
1

1 − u1
,

1

1 − u1
, v132; 1

)

−

1

4
G

(

0,
1

1 − u1
, v123, 1; 1

)

− 1

4
G

(

0,
1

1 − u1
, v123,

1

1 − u1
; 1

)

− 1

4
G

(

0,
1

1 − u1
, v132, 1; 1

)

−

1

4
G

(

0,
1

1 − u1
, v132,

1

1 − u1
; 1

)

− 1

4
G

(

0,
1

1 − u2
, 0, v213; 1

)

− 1

4
G

(

0,
1

1 − u2
, 0, v231; 1

)

−

1

2
G

(

0,
1

1 − u2
,

1

1 − u2
, v213; 1

)

− 1

2
G

(

0,
1

1 − u2
,

1

1 − u2
, v231; 1

)

−

1

4
G

(

0,
1

1 − u2
, v213, 1; 1

)

− 1

4
G

(

0,
1

1 − u2
, v213,

1

1 − u2
; 1

)

− 1

4
G

(

0,
1

1 − u2
, v231, 1; 1

)

−

1

4
G

(

0,
1

1 − u2
, v231,

1

1 − u2
; 1

)

− 1

4
G

(

0,
1

1 − u3
, 0, v312; 1

)

− 1

4
G

(

0,
1

1 − u3
, 0, v321; 1

)

−

1

2
G

(

0,
1

1 − u3
,

1

1 − u3
, v312; 1

)

− 1

2
G

(

0,
1

1 − u3
,

1

1 − u3
, v321; 1

)

−

1

4
G

(

0,
1

1 − u3
, v312, 1; 1

)

− 1

4
G

(

0,
1

1 − u3
, v312,

1

1 − u3
; 1

)

− 1

4
G

(

0,
1

1 − u3
, v321, 1; 1

)

−

1

4
G

(

0,
1

1 − u3
, v321,

1

1 − u3
; 1

)

− 1

4
G

(

0, u123, 0,
1

1 − u1
; 1

)

− 1

4
G

(

0, u123,
1

1 − u1
, 0; 1

)

+

1

4
G

(

0, u123,
1

1 − u1
, 1; 1

)

− 1

4
G

(

0, u123,
1

1 − u1
,

1

1 − u1
; 1

)

−

1

4
G

(

0, u123,
u2 − 1

u1 + u2 − 1
, 1; 1

)

+
1

4
G

(

0, u123,
u2 − 1

u1 + u2 − 1
,

1

1 − u1
; 1

)

−

1

4
G

(

0, u123,
1

u3
, 0; 1

)

− 1

4
G

(

0, u231, 0,
1

1 − u2
; 1

)

− 1

4
G

(

0, u231,
1

u1
, 0; 1

)

−

1

4
G

(

0, u231,
1

1 − u2
, 0; 1

)

+
1

4
G

(

0, u231,
1

1 − u2
, 1; 1

)

− 1

4
G

(

0, u231,
1

1 − u2
,

1

1 − u2
; 1

)

−
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• We checked that our result has all the properties required
 for the remainder function: 

✓ the result is of uniform transcendental weight 4.

✓ no new transcendental numbers appear (only              ).                    

✓ explicitly dependent on conformal cross-ratios.

✓ symmetric in all its arguments.

✓ vanishes in all collinear and multi-Regge limits.

✓ we checked numerically several points.

ζ2, ζ3, ζ4

The six-point remainder function
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The six-point remainder function

proofs JHEP_069P_0310

various limits can easily be extended to non-strongly ordered limits. In the next section

we briefly comment on such limits when all cross ratios are equal.

We start with the limit where all cross ratios are small, u1 ! u2 ! u3 ! 1. We can

easily obtain the leading contribution by using MBasymptotics. We find,

lim
u1!u2!u3!1

R(2)
6,WL(u1, u2, u3)

=
π2

24
(ln u1 ln u2 + ln u2 ln u3 + ln u3 ln u1) +

17π2

1440
+ O(ui) .

(4.1)

In exactly the same way, we can find the asymptotic behaviour when some of the cross

ratios are equal to unity and all the others are small,

lim
u1!u2!1

R(2)
6,WL(u1, u2, 1) = 0 ,

lim
u1!1

R(2)
6,WL(u1, 1, 1) =

1

2
ζ3 ln u1 −

π4

96
+ O(u1) .

(4.2)

Note that the limit u1 ! u2 ! 1, with u3 = 1, corresponds to the multi-Regge limit (D.3).

We now repeat the previous analysis in the limit where the cross ratios are large,

u1 # u2 # u3 # 1. Using again MBasymptotics to extract the leading behaviour, we find,

lim
u1"u2"u3"1

R(2)
6,WL(u1, u2, u3) =

− 1

96
ln4 u1

u2u3
− 5

48
π2 ln2 u1

u2u3
− 1

2
ζ3 ln

u1

u2u3
− 157π4

1440
+ O(1/ui) .

(4.3)

Similarly, for the case were some of the cross ratios are equal to unity, we find,

lim
u1"u2"1

R(2)
6,WL(u1, u2, 1) =− 1

96
ln4 u1

u2
− 1

12
π2 ln2 u1

u2
− 3π4

40
+O(1/ui) ,

lim
u1"1

R(2)
6,WL(u1, 1, 1) =− 1

96
ln4 u1−

1

16
π2 ln2 u1+

1

2
ζ3 lnu1−

23π4

480
+O(1/u1) .

(4.4)

5 The remainder function for all cross ratios equal

In this section we discuss the form of the remainder function in the special case when all

the cross ratios are equal, u1 = u2 = u3 = u. In [17] several special values were presented

for this case. We start by briefly reviewing how these values were obtained and present

some additional special values. At the end of this section we give the analytic form of

R(2)
6,WL(u, u, u) for arbitrary u.

In the special case where u = 1, which corresponds to a regular hexagon [26, 33],

most of the integrations are easily done using Barnes lemmas and their corollaries, leaving

us with at most onefold integrals. Note that some of these integrals involve Γ functions

with poles in half integer values which lead to multiple binomial sums [50, 51], but all

these contributions cancel out when combining all the pieces. Applying this strategy to

our integrals, we immediately find the value quoted in [17],

R(2)
6,WL(1, 1, 1) = −π4

36
$ −2.70581... . (5.1)
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• We can derive easily the asymptotic behavior of the 
remainder function 

➡ all cross ratios small (strongly ordered)

➡ all cross ratios large (strongly ordered)
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Regular hexagons
• Let us concentrate now on Zn symmetric regular 

hexagons, 

s12 = s23 = s34 = s45 = s56 = s61 s123 = s234 = s345

u1 = u2 = u3 (= u)

• These hexagons are interesting because
1. the remainder function is a function of one single 

variable u.
2. The corresponding result at strong coupling is also 

known analytically. [Alday, Maldacena, Gaiotto]
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Regular hexagons at strong coupling

As µ is real and very large, u is very close to zero. As we approach µ = 1, u grows

until u = 1/4 at µ = 1. For u > 1/4, µ is a phase, with µ = −1 at u = 1 and u becoming

very large as µ approaches −i.

The final answer for the remainder function in this regime is then obtained by adding

up all the contributions

R(u, u, u) = −π

6
+

1

3π
φ2 +

3

8

(

log2 u + 2Li2(1 − u)
)

, u =
1

4 cos2(φ/3)
(5.11)

This is the remainder function for the scattering of six gluons at strong coupling in the

particular kinematical configuration in which all the cross-ratios ui coincide.
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Fig. 16: Remainder function (5.11) at strong coupling for u1 = u2 = u2 = u

5.2. A curious observation

The remainder function at two loops for the case at hand was extensively considered in

[42], based on previous work [13,12,43]. In that paper the remainder function was computed

numerically for several values of u (in particular, u = 1/9, 1/4, 1, 3.83 and u = 100). We

could try to fit their numerics by a function with some arbitrary coefficients but the general

structure of (5.11) , similar to what it was done in [44] for the case of the octagon in AdS3.

More precisely, we consider a function of the form

Rc1,c2,c3
= c1

(

−π

6
+

1

3π
φ2

)

+ c2
3

8

(

log2 u + 2Li2(1 − u)
)

+ c3 (5.12)

The idea is that the high temperature of the TBA equations are not too sensitive to the

precise form of the kernels, so that perhaps this functional form holds for all values of the

coupling. In addition, in our computation, the two terms arise in a somewhat independent

fashion, so we have given us the freedom to change their relative coefficients11. It turns

out that for certain values of c′s, namely c1 ≈ 12.2, c2 ≈ 11.4, c3 ≈ −9.1, we get a quite

good approximation of the two loops result, see the following figure

11 Note that we obtain that c1/c2 ≈ 1.07, which is close to one, so perhaps we should not change

the relative coefficients of the two terms!
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Fig. 14: Analytic (continuous line) vs. numeric (points) solutions of the integral

equation for the case Z = 0.01 and µ = eiφ, with φ running from 0 to π.

In particular, this shows that the numerical solutions can be quite reliable.

Second, we see that the values of the regularized area/free energy for µ = ±1 is simply

given by ±π
6 . This values of µ correspond to u = 1/4 and u = 1 respectively, and the value

for the free energy is in very good agreement with what we expect from the numerical

analysis of appendix B. 10 Recall that µ = ±1 corresponds to the two kinds of regular

hexagons.

Third, the free energy can be expressed in terms of u by using

µ + µ−1 = 2 cos φ =
1 − 3u

u3/2
(5.10)

where φ is not necessarily real. We are interested in the whole region u > 0. We can cover

this region by going along the following contour in the µ−plane

 µRe

 µIm

8u=

u=1 u=1/4 u=0

Fig. 15: Different values of u as we follow the path shown by the figure in the
µ−plane. For u > 1/4 µ is a phase.

10 The substraction of 2Apentagon in appendix B is needed since the free energy was defined in

such a way that is zero for very large values of |Z|.
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As µ is real and very large, u is very close to zero. As we approach µ = 1, u grows

until u = 1/4 at µ = 1. For u > 1/4, µ is a phase, with µ = −1 at u = 1 and u becoming

very large as µ approaches −i.

The final answer for the remainder function in this regime is then obtained by adding

up all the contributions
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log2 u + 2Li2(1 − u)
)

, u =
1

4 cos2(φ/3)
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This is the remainder function for the scattering of six gluons at strong coupling in the

particular kinematical configuration in which all the cross-ratios ui coincide.
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5.2. A curious observation

The remainder function at two loops for the case at hand was extensively considered in

[42], based on previous work [13,12,43]. In that paper the remainder function was computed

numerically for several values of u (in particular, u = 1/9, 1/4, 1, 3.83 and u = 100). We

could try to fit their numerics by a function with some arbitrary coefficients but the general

structure of (5.11) , similar to what it was done in [44] for the case of the octagon in AdS3.
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The idea is that the high temperature of the TBA equations are not too sensitive to the

precise form of the kernels, so that perhaps this functional form holds for all values of the

coupling. In addition, in our computation, the two terms arise in a somewhat independent

fashion, so we have given us the freedom to change their relative coefficients11. It turns

out that for certain values of c′s, namely c1 ≈ 12.2, c2 ≈ 11.4, c3 ≈ −9.1, we get a quite

good approximation of the two loops result, see the following figure

11 Note that we obtain that c1/c2 ≈ 1.07, which is close to one, so perhaps we should not change

the relative coefficients of the two terms!
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[Alday, Maldacena, Gaiotto]

5.1. Particular case at hand

The integral equations (3.6) are exactly in the standard form (5.1) , so that we can

apply the above results straightforwardly. We have three species of particles, that we call

ε1, ε2 and ε̃ (with ε1 = ε2 = ε). The mass of each excitation is 9

mε̃ =
√

2|Z|, mε1 = mε2 = |Z| (5.5)

The chemical potential for each species is λε̃ = 1, λε1 = µ and λε2 = 1/µ. From the

particular kernels in our equation (3.6) we can easily compute Nab. We find

Nε̃ε̃ = 1, Nε̃εi = Nεi ε̃ = 1, Nεiεj =
1

2
(5.6)

Pluggin this in (5.4), we can solve for xε̃ and xε = xε1 = xε2 , we find

eε̃ = xε̃ = 1 + µ2/3 + µ−2/3, eε = xε = µ1/3 + µ−1/3 (5.7)

The free energy is simply

F = − 1

π

(

L1(xε̃) + Lµ(xε) + L1/µ(xε)
)

(5.8)

Using the explicit expression for L and identities involving di-logarithms one can show the

very simple result

−F = Afree =
π

6
− 1

3π
φ2, µ = eiφ (5.9)

Several comments are in order. First, is it possible to solve numerically the integral equa-

tion for small values of Z (for instance Z = 0.01). After several iterations we find numerical

results that are in perfect agreement with the analytic solution (5.9) , see for instance the

following figure

9 Quite interestingly, note that the mass of these three excitations agree (up to the propor-

tionality factor |Z|) with the masses of the three fluctuations around the classical string solution

describing a single cusp (or four cusps) in AdS5, see [41] .
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Regular hexagons at strong coupling
• The observation is that numerically the strong and weak 

coupling results look extremely similar, and AGM 
suggested that the weak coupling result could be written 
in the form

As µ is real and very large, u is very close to zero. As we approach µ = 1, u grows

until u = 1/4 at µ = 1. For u > 1/4, µ is a phase, with µ = −1 at u = 1 and u becoming

very large as µ approaches −i.
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• Does this hint to some deeper structure..?
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Regular hexagons at weak coupling

• Putting all u’s equal, the square roots reduce to

proofs JHEP_069P_0310

Note that this value agrees with the value conjectured in [24]. The asymptotic behaviour

of R(2)
6,WL(u, u, u) for u → 0 can be obtained in a similar way using MBasymptotics, which

leaves us with at most trivial onefold integrals. The result is

R(2)
6,WL(u, u, u) =

π2

8
ln2 u +

17π4

1440
+ O(u) . (5.2)

Finally, the asymptotic value for large u is obtained in exactly the same way. We can

perform a rescaling u → λ−1 u and expand around small values of λ using MBasymptotics.

We find

lim
u→∞

R(2)
6,WL(u, u, u) = − π4

144
+ O(1/u) # −0.67645... , (5.3)

in very good agreement with the numerical value quoted in [24].

For u = 1/2, the denominator in eq. (3.12) drastically simplifies. Repeating the deriva-

tion of section 3, we obtain,

R(2)
6,WL

(
1

2
,
1

2
,
1

2

)

= −105

64
ζ3 ln 2 − 5

64
ln4 2 +

5

64
π2 ln2 2 − 15

8
Li4

(
1

2

)

+
17π4

2304

# −1.26609 . . . .

(5.4)

Let us now turn to the generic case where all three cross ratios are equal but they still

take generic values. In this limit it is easy to see that eqs. (3.22) and (C.16) reduce to

u(±)
ijk → µ(±) =

1 ±
√

1 − 4u

2u
, v(±)

ijk → ν(±) = ± 1√
1 − u

. (5.5)

We can massage the resulting expression and apply the reduction algorithm of appendix B

to simplify the expression as much as possible. In particular, we can remove all the de-

pendence on ν(±). As regards µ(±), we observe that similar arguments have already been

found in the strong coupling case [33].9 Note that for u = 1/4 the square roots in eq. (5.5)

vanish. This value corresponds to a regular hexagon in a space with a (2, 2) signature [33].

Using the relations of appendix E and F, we find,

R(2)
6,WL

(
1

4
,
1

4
,
1

4

)

= 3Li2

(
1

3

)

ln2 2 − 9

2
Li2

(
1

3

)

ln2 3 − 567

4
Li3

(
1

3

)

ln 2

+
543

4
Li3

(

−1

2

)

ln 2 +
567

8
Li3

(
1

3

)

ln 3 − 567

4
Li3

(

−1

2

)

ln 3 +
1323

16
ζ3 ln 2

+
945

32
ζ3 ln 3 − 39

32
ln4 2 − 257

64
ln4 3 +

173

8
ln 3 ln3 2 +

189

8
ln3 3 ln 2 − 543

16
ln2 3 ln2 2

− 63

16
π2 ln2 2 − 181

64
π2 ln2 3 +

189

2
Li4

(
1

2

)

+
1701

8
Li4

(
1

3

)

− 543

16
Li4

(

−1

3

)

+
555

2
Li4

(

−1

2

)

− 9

2
Li2

(
1

3

)2

− 567

16
S2,2

(

−1

3

)

− 567

4
S2,2

(

−1

2

)

− 2123π4

2880

# 1.08917 . . . .

(5.6)

9We are grateful to Paul Heslop for pointing out that

(1 − u) µ
(+) = 1 +

µ

xε

, (1 − u) µ
(−) = 1 +

1
µxε

,

where µ and xε are defined in [33].
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• The answer reduces to ~ 100 terms.

• Two interesting observations:
➡ The point u=1/4 is special.
➡ We find back the arguments we had at strong 

coupling:

proofs JHEP_069P_0310
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(5.4)

Let us now turn to the generic case where all three cross ratios are equal but they still

take generic values. In this limit it is easy to see that eqs. (3.22) and (C.16) reduce to

u(±)
ijk → µ(±) =

1 ±
√

1 − 4u

2u
, v(±)

ijk → ν(±) = ± 1√
1 − u

. (5.5)

We can massage the resulting expression and apply the reduction algorithm of appendix B

to simplify the expression as much as possible. In particular, we can remove all the de-

pendence on ν(±). As regards µ(±), we observe that similar arguments have already been

found in the strong coupling case [33].9 Note that for u = 1/4 the square roots in eq. (5.5)

vanish. This value corresponds to a regular hexagon in a space with a (2, 2) signature [33].

Using the relations of appendix E and F, we find,

R(2)
6,WL

(
1

4
,
1

4
,
1

4

)

= 3Li2

(
1

3

)

ln2 2 − 9

2
Li2

(
1

3

)

ln2 3 − 567

4
Li3

(
1

3

)

ln 2

+
543

4
Li3

(

−1

2

)

ln 2 +
567

8
Li3

(
1

3

)

ln 3 − 567

4
Li3

(

−1

2

)

ln 3 +
1323

16
ζ3 ln 2

+
945

32
ζ3 ln 3 − 39

32
ln4 2 − 257

64
ln4 3 +

173

8
ln 3 ln3 2 +

189

8
ln3 3 ln 2 − 543

16
ln2 3 ln2 2

− 63

16
π2 ln2 2 − 181

64
π2 ln2 3 +

189

2
Li4

(
1

2

)

+
1701

8
Li4

(
1

3

)

− 543

16
Li4

(

−1

3

)

+
555

2
Li4

(

−1

2

)

− 9

2
Li2

(
1

3

)2

− 567

16
S2,2

(

−1

3

)

− 567

4
S2,2

(

−1

2

)

− 2123π4

2880

# 1.08917 . . . .

(5.6)

9We are grateful to Paul Heslop for pointing out that

(1 − u) µ
(+) = 1 +

µ

xε

, (1 − u) µ
(−) = 1 +

1
µxε

,

where µ and xε are defined in [33].
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5.1. Particular case at hand

The integral equations (3.6) are exactly in the standard form (5.1) , so that we can

apply the above results straightforwardly. We have three species of particles, that we call

ε1, ε2 and ε̃ (with ε1 = ε2 = ε). The mass of each excitation is 9

mε̃ =
√

2|Z|, mε1 = mε2 = |Z| (5.5)

The chemical potential for each species is λε̃ = 1, λε1 = µ and λε2 = 1/µ. From the

particular kernels in our equation (3.6) we can easily compute Nab. We find

Nε̃ε̃ = 1, Nε̃εi = Nεi ε̃ = 1, Nεiεj =
1

2
(5.6)

Pluggin this in (5.4), we can solve for xε̃ and xε = xε1 = xε2 , we find

eε̃ = xε̃ = 1 + µ2/3 + µ−2/3, eε = xε = µ1/3 + µ−1/3 (5.7)

The free energy is simply

F = − 1

π

(

L1(xε̃) + Lµ(xε) + L1/µ(xε)
)

(5.8)

Using the explicit expression for L and identities involving di-logarithms one can show the

very simple result

−F = Afree =
π

6
− 1

3π
φ2, µ = eiφ (5.9)

Several comments are in order. First, is it possible to solve numerically the integral equa-

tion for small values of Z (for instance Z = 0.01). After several iterations we find numerical

results that are in perfect agreement with the analytic solution (5.9) , see for instance the

following figure

9 Quite interestingly, note that the mass of these three excitations agree (up to the propor-

tionality factor |Z|) with the masses of the three fluctuations around the classical string solution

describing a single cusp (or four cusps) in AdS5, see [41] .
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Fig. 14: Analytic (continuous line) vs. numeric (points) solutions of the integral

equation for the case Z = 0.01 and µ = eiφ, with φ running from 0 to π.

In particular, this shows that the numerical solutions can be quite reliable.

Second, we see that the values of the regularized area/free energy for µ = ±1 is simply

given by ±π
6 . This values of µ correspond to u = 1/4 and u = 1 respectively, and the value

for the free energy is in very good agreement with what we expect from the numerical

analysis of appendix B. 10 Recall that µ = ±1 corresponds to the two kinds of regular

hexagons.

Third, the free energy can be expressed in terms of u by using

µ + µ−1 = 2 cos φ =
1 − 3u

u3/2
(5.10)

where φ is not necessarily real. We are interested in the whole region u > 0. We can cover

this region by going along the following contour in the µ−plane

 µRe

 µIm

8u=

u=1 u=1/4 u=0

Fig. 15: Different values of u as we follow the path shown by the figure in the
µ−plane. For u > 1/4 µ is a phase.

10 The substraction of 2Apentagon in appendix B is needed since the free energy was defined in

such a way that is zero for very large values of |Z|.
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Finally, let us turn to the expression for generic values of u. Using the notation

introduced in eq. (3.23) as well as the corresponding one for harmonic polylogarithms,

H(!w; 1/µ) = H
(

!w; 1/µ(+)
)

+ H
(

!w; 1/µ(−)
)

, (5.7)

the final answer for the remainder function reads, when all three cross ratios are equal,

R(2)
6,WL(u, u, u) =

(5.8)
1

4
π2G

(

1,
1

2
;u

)

+
1

8
π2G

(
1

1 − u
,

u − 1

2u − 1
; 1

)

− 3G

(

0, 1, 0,
1

2
;u

)

− 3G

(

0, 1,
1

2
, 0;u

)

+

3

4
G

(

0,
u − 1

2u − 1
, 0,

1

1 − u
; 1

)

+
3

4
G

(

0,
u − 1

2u − 1
,

1

1 − u
, 0; 1

)

− 3

4
G

(

0,
u − 1

2u − 1
,

1

1 − u
, 1; 1

)

+

3

4
G

(

0,
u − 1

2u − 1
,

1

1 − u
,

1

1 − u
; 1

)

− 3

4
G

(

0,
u − 1

2u − 1
,

u − 1

2u − 1
,

1

1 − u
; 1

)

− 6G

(

1, 0, 0,
1

2
;u

)

−

3G

(

1, 0,
1

2
, 0;u

)

+ 3G

(

1,
1

2
, 0, 0;u

)

− 3G

(

1,
1

2
, 1, 0;u

)

− 3

4
G

(
1

1 − u
, 1,

1

u
, 0; 1

)

+

3

2
G

(
1

1 − u
,

1

1 − u
, 1,

1

1 − u
; 1

)

+
3

4
G

(
1

1 − u
,

u − 1

2u − 1
, 0, 1; 1

)

−

3

4
G

(
1

1 − u
,

u − 1

2u − 1
, 0,

1

1 − u
; 1

)

+
3

4
G

(
1

1 − u
,

u − 1

2u − 1
, 1, 0; 1

)

−

3

4
G

(
1

1 − u
,

u − 1

2u − 1
,

1

1 − u
, 0; 1

)

+
3

4
G

(
1

1 − u
,

u − 1

2u − 1
,

1

1 − u
, 1; 1

)

−

3

4
G

(
1

1 − u
,

u − 1

2u − 1
,

1

1 − u
,

1

1 − u
; 1

)

− 3

4
G

(
1

1 − u
,

u − 1

2u − 1
,

u − 1

2u − 1
, 1; 1

)

+

3

4
G

(
1

1 − u
,

u − 1

2u − 1
,

u − 1

2u − 1
,

1

1 − u
; 1

)

− 1

8
π2G

(
1

1 − u
, µ; 1

)

− 3

4
G

(

0, µ, 0,
1

1 − u
; 1

)

−

3

4
G

(

0, µ,
1

1 − u
, 0; 1

)

+
3

4
G

(

0, µ,
1

1 − u
, 1; 1

)

− 3

4
G

(

0, µ,
1

1 − u
,

1

1 − u
; 1

)

−

3

4
G

(

0, µ,
1

u
, 0; 1

)

− 3

4
G

(

0, µ,
u − 1

2u − 1
, 1; 1

)

+
3

4
G

(

0, µ,
u − 1

2u − 1
,

1

1 − u
; 1

)

−

3

4
G

(
1

1 − u
, µ, 0, 1; 1

)

+
3

4
G

(
1

1 − u
, µ, 0,

1

1 − u
; 1

)

− 3

4
G

(
1

1 − u
, µ, 1, 0; 1

)

+

3

4
G

(
1

1 − u
, µ,

1

1 − u
, 0; 1

)

− 3

4
G

(
1

1 − u
, µ,

1

1 − u
, 1; 1

)

+
3

4
G

(
1

1 − u
, µ,

1

1 − u
,

1

1 − u
; 1

)

+

3

4
G

(
1

1 − u
, µ,

1

u
, 0; 1

)

+
3

4
G

(
1

1 − u
, µ,

u − 1

2u − 1
, 1; 1

)

− 3

4
G

(
1

1 − u
, µ,

u − 1

2u − 1
,

1

1 − u
; 1

)

−

3

4
G

(
1

1 − u
, 1,

1

u
; 1

)

H(0;u) +
3

4
G

(
1

1 − u
,

u − 1

2u − 1
, 0; 1

)

H(0;u) +

3

4
G

(
1

1 − u
,

u − 1

2u − 1
, 1; 1

)

H(0;u) − 3

4
G

(
1

1 − u
,

u − 1

2u − 1
,

u − 1

2u − 1
; 1

)

H(0;u) −

3

4
G

(

0, µ,
1

u
; 1

)

H(0;u) − 3

4
G

(

0, µ,
u − 1

2u − 1
; 1

)

H(0;u) − 3

4
G

(
1

1 − u
, µ, 0; 1

)

H(0;u) −

3

4
G

(
1

1 − u
, µ, 1; 1

)

H(0;u) +
3

4
G

(
1

1 − u
, µ,

1

u
; 1

)

H(0;u) +

3

4
G

(
1

1 − u
, µ,

u − 1

2u − 1
; 1

)

H(0;u) +
3

2
G

(
1

1 − u
,

u − 1

2u − 1
; 1

)

H(0, 0;u) −
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3

2
G

(
1

1 − u
, µ; 1

)

H(0, 0;u)− 1

8
π2H(0, 0;u)+ 3H(0, 0;u)H(0, 1; (2u))+

1

4
π2H(0, 1; (2u))+

3

2
H(0, 0;u)H

(

0, 1;
2u − 1

u − 1

)

− 1

8
π2H

(

0, 1;
2u − 1

u − 1

)

+
3

4
G

(
1
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u − 1

2u − 1
; 1

)

H(1, 0;u) −

3

4
G

(
1

1 − u
, µ; 1
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H(1, 0;u) + 3H(0, 1; (2u))H(1, 0;u) +
3

4
H

(

0, 1;
2u − 1

u − 1
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1

8
π2H(1, 0;u) +

1

8
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3
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9
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(
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)

+
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3

2
H

(

0, 1, 0, 1;
2u − 1

u − 1

)

+

3

2
H(0, 1, 1, 0;u) − 3

4
H

(

0, 1, 1, 1;
2u − 1

u − 1

)

+ 3H

(

1, 0, 0, 1;
2u − 1

u − 1

)

+
15

4
H(1, 0, 1, 0;u) −

3H(1, 1, 0, 0;u) +
3

4
H

(

1, 1, 0, 1;
2u − 1

u − 1

)

+
3

2
H(1, 1, 1, 0;u) − 1

8
π2H(0;u)H

(

1;
1

µ

)

−

3

2
H(0, 0;u)H

(

0, 1;
1

µ

)

− 3

4
H(1, 0;u)H

(

0, 1;
1

µ

)

+
1

8
π2H
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0, 0, 1, 1;
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(
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+
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89π4
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.

6 Conclusion

In this paper, we have given details on the first analytic calculation of the remainder func-

tion of the two-loop six-edged Wilson loop in the Euclidean space in arbitrary kinematics,

which we recently performed [17]. By displaying in detail how the most difficult of the inte-

grals is computed, we have shown nonetheless how the whole calculation is greatly simplified

by exploiting the Regge exactness of the six-edged Wilson loop in the quasi-multi-Regge

kinematics of a pair along the ladder.

The remainder function is given as a combination of Goncharov polylogarithms of

uniform transcendental weight four. The expression we have obtained is very lengthy.

At present, we do not know whether, and if so to what extent, this expression can be

further simplified by using some other kinematic limit that leaves the conformal cross

ratios unchanged. Such a setup is for example found in backward scattering. Let us

consider the physical region in which two gluons undergo a backward scattering. In a

2 → 2 scattering process, backward scattering may be obtained from forward scattering by

crossing the t and u channels. In a 2 → 4 scattering process, we may choose the kinematics

in which 1 and 2 are the incoming gluons, with momenta p2 = (p+
2 /2, 0, 0, p+

2 /2) and

p1 = (p−1 /2, 0, 0,−p−1 /2), and 3, 4, 5, 6 are the outgoing gluons, with ordering

y3 # y4 $ y5 # y6; |p3⊥| $ |p4⊥| $ |p5⊥| $ |p6⊥| . (6.1)
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Fig. 14: Analytic (continuous line) vs. numeric (points) solutions of the integral

equation for the case Z = 0.01 and µ = eiφ, with φ running from 0 to π.

In particular, this shows that the numerical solutions can be quite reliable.

Second, we see that the values of the regularized area/free energy for µ = ±1 is simply

given by ±π
6 . This values of µ correspond to u = 1/4 and u = 1 respectively, and the value

for the free energy is in very good agreement with what we expect from the numerical

analysis of appendix B. 10 Recall that µ = ±1 corresponds to the two kinds of regular

hexagons.

Third, the free energy can be expressed in terms of u by using

µ + µ−1 = 2 cos φ =
1 − 3u

u3/2
(5.10)

where φ is not necessarily real. We are interested in the whole region u > 0. We can cover

this region by going along the following contour in the µ−plane

 µRe

 µIm

8u=

u=1 u=1/4 u=0

Fig. 15: Different values of u as we follow the path shown by the figure in the
µ−plane. For u > 1/4 µ is a phase.

10 The substraction of 2Apentagon in appendix B is needed since the free energy was defined in

such a way that is zero for very large values of |Z|.

37

u=1/2

As µ is real and very large, u is very close to zero. As we approach µ = 1, u grows

until u = 1/4 at µ = 1. For u > 1/4, µ is a phase, with µ = −1 at u = 1 and u becoming

very large as µ approaches −i.

The final answer for the remainder function in this regime is then obtained by adding

up all the contributions

R(u, u, u) = −π

6
+

1

3π
φ2 +

3

8

(

log2 u + 2Li2(1 − u)
)

, u =
1

4 cos2(φ/3)
(5.11)

This is the remainder function for the scattering of six gluons at strong coupling in the

particular kinematical configuration in which all the cross-ratios ui coincide.

!2 2 4

log!u"

log!10"

2

3

4

R

Fig. 16: Remainder function (5.11) at strong coupling for u1 = u2 = u2 = u

5.2. A curious observation

The remainder function at two loops for the case at hand was extensively considered in

[42], based on previous work [13,12,43]. In that paper the remainder function was computed

numerically for several values of u (in particular, u = 1/9, 1/4, 1, 3.83 and u = 100). We

could try to fit their numerics by a function with some arbitrary coefficients but the general

structure of (5.11) , similar to what it was done in [44] for the case of the octagon in AdS3.

More precisely, we consider a function of the form

Rc1,c2,c3
= c1

(

−π

6
+

1

3π
φ2

)

+ c2
3

8

(

log2 u + 2Li2(1 − u)
)

+ c3 (5.12)

The idea is that the high temperature of the TBA equations are not too sensitive to the

precise form of the kernels, so that perhaps this functional form holds for all values of the

coupling. In addition, in our computation, the two terms arise in a somewhat independent

fashion, so we have given us the freedom to change their relative coefficients11. It turns

out that for certain values of c′s, namely c1 ≈ 12.2, c2 ≈ 11.4, c3 ≈ −9.1, we get a quite

good approximation of the two loops result, see the following figure

11 Note that we obtain that c1/c2 ≈ 1.07, which is close to one, so perhaps we should not change

the relative coefficients of the two terms!
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Fig. 14: Analytic (continuous line) vs. numeric (points) solutions of the integral

equation for the case Z = 0.01 and µ = eiφ, with φ running from 0 to π.

In particular, this shows that the numerical solutions can be quite reliable.

Second, we see that the values of the regularized area/free energy for µ = ±1 is simply

given by ±π
6 . This values of µ correspond to u = 1/4 and u = 1 respectively, and the value

for the free energy is in very good agreement with what we expect from the numerical

analysis of appendix B. 10 Recall that µ = ±1 corresponds to the two kinds of regular

hexagons.

Third, the free energy can be expressed in terms of u by using

µ + µ−1 = 2 cos φ =
1 − 3u

u3/2
(5.10)

where φ is not necessarily real. We are interested in the whole region u > 0. We can cover

this region by going along the following contour in the µ−plane

 µRe

 µIm

8u=

u=1 u=1/4 u=0

Fig. 15: Different values of u as we follow the path shown by the figure in the
µ−plane. For u > 1/4 µ is a phase.

10 The substraction of 2Apentagon in appendix B is needed since the free energy was defined in

such a way that is zero for very large values of |Z|.
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u=1/2

J
H
E
P
0
3
(
2
0
1
0
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0
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0.2 0.4 0.6 0.8 1.0
u

!2

2

4

6

8

10

R6!u, u, u"

Figure 1. The remainder function R(2)
6 (u, u, u) for 0 < u ≤ 1. The points represent the numerical

values given in ref. [18].

form at www.arxiv.org where a text file containing the Mathematica expression for the

remainder function is provided.

We have checked numerically that our result is completely symmetric in its arguments.

Furthermore, we have checked analytically that the expression satisfies the constraints

imposed by the multi-Regge and the collinear limits. Note that the vanishing in these limits

is non trivial, since the expression of R(2)
WL,6 in general kinematics involves polylogarithms

whose arguments are ratios of cross ratios, which can be O(1) in the limit. However, all

those contributions exactly cancel when approaching the limit. Finally, we have checked

numerically at several points that our results agree with the numerical results of ref. [18].

In the particular case where all three conformal cross ratios are equal, we find that,

R(2)
WL,6(1, 1, 1) = −

π4

36
# −2.70581 . . . ,

lim
u→∞

R(2)
WL,6(u, u, u) = −

π4

144
# −0.67645 . . . ,

(4.13)

in agreement, within numerical errors, with the values quoted in ref. [18]. Similarly, the

asymptotic behavior for u → 0 is given by,
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As µ is real and very large, u is very close to zero. As we approach µ = 1, u grows

until u = 1/4 at µ = 1. For u > 1/4, µ is a phase, with µ = −1 at u = 1 and u becoming

very large as µ approaches −i.

The final answer for the remainder function in this regime is then obtained by adding

up all the contributions

R(u, u, u) = −π

6
+

1

3π
φ2 +

3

8

(

log2 u + 2Li2(1 − u)
)

, u =
1

4 cos2(φ/3)
(5.11)

This is the remainder function for the scattering of six gluons at strong coupling in the

particular kinematical configuration in which all the cross-ratios ui coincide.
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Fig. 16: Remainder function (5.11) at strong coupling for u1 = u2 = u2 = u

5.2. A curious observation

The remainder function at two loops for the case at hand was extensively considered in

[42], based on previous work [13,12,43]. In that paper the remainder function was computed

numerically for several values of u (in particular, u = 1/9, 1/4, 1, 3.83 and u = 100). We

could try to fit their numerics by a function with some arbitrary coefficients but the general

structure of (5.11) , similar to what it was done in [44] for the case of the octagon in AdS3.

More precisely, we consider a function of the form

Rc1,c2,c3
= c1

(

−π

6
+

1

3π
φ2

)

+ c2
3

8

(

log2 u + 2Li2(1 − u)
)

+ c3 (5.12)

The idea is that the high temperature of the TBA equations are not too sensitive to the

precise form of the kernels, so that perhaps this functional form holds for all values of the

coupling. In addition, in our computation, the two terms arise in a somewhat independent

fashion, so we have given us the freedom to change their relative coefficients11. It turns

out that for certain values of c′s, namely c1 ≈ 12.2, c2 ≈ 11.4, c3 ≈ −9.1, we get a quite

good approximation of the two loops result, see the following figure

11 Note that we obtain that c1/c2 ≈ 1.07, which is close to one, so perhaps we should not change

the relative coefficients of the two terms!
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Fig. 14: Analytic (continuous line) vs. numeric (points) solutions of the integral

equation for the case Z = 0.01 and µ = eiφ, with φ running from 0 to π.

In particular, this shows that the numerical solutions can be quite reliable.

Second, we see that the values of the regularized area/free energy for µ = ±1 is simply

given by ±π
6 . This values of µ correspond to u = 1/4 and u = 1 respectively, and the value

for the free energy is in very good agreement with what we expect from the numerical

analysis of appendix B. 10 Recall that µ = ±1 corresponds to the two kinds of regular

hexagons.

Third, the free energy can be expressed in terms of u by using

µ + µ−1 = 2 cos φ =
1 − 3u

u3/2
(5.10)

where φ is not necessarily real. We are interested in the whole region u > 0. We can cover

this region by going along the following contour in the µ−plane

 µRe

 µIm

8u=

u=1 u=1/4 u=0

Fig. 15: Different values of u as we follow the path shown by the figure in the
µ−plane. For u > 1/4 µ is a phase.

10 The substraction of 2Apentagon in appendix B is needed since the free energy was defined in

such a way that is zero for very large values of |Z|.
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We have checked numerically that our result is completely symmetric in its arguments.

Furthermore, we have checked analytically that the expression satisfies the constraints

imposed by the multi-Regge and the collinear limits. Note that the vanishing in these limits

is non trivial, since the expression of R(2)
WL,6 in general kinematics involves polylogarithms

whose arguments are ratios of cross ratios, which can be O(1) in the limit. However, all

those contributions exactly cancel when approaching the limit. Finally, we have checked

numerically at several points that our results agree with the numerical results of ref. [18].

In the particular case where all three conformal cross ratios are equal, we find that,
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in agreement, within numerical errors, with the values quoted in ref. [18]. Similarly, the

asymptotic behavior for u → 0 is given by,

lim
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Further results for the special case where all three conformal ratios are equal are summa-

rized in figure 1. Note that even though our numerical evaluation is for the moment limited

to 0 < ui ≤ 1, we can still compute the asymptotic value when all conformal cross ratios

are equal and large by expanding the Mellin-Barnes integrals around u = ∞ before taking

residues. We find perfect agreement with the numerical value quoted in ref. [18], which

deviates slightly from the asymptotic value obtained from the analytic expression of the

remainder function proposed in ref. [20].

We conclude this section by making some comments on the numerical evaluation of

Goncharov’s multiple polylogarithms. Up to weight two, Goncharov’s polylogarithms can
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Pure zeta values

As µ is real and very large, u is very close to zero. As we approach µ = 1, u grows

until u = 1/4 at µ = 1. For u > 1/4, µ is a phase, with µ = −1 at u = 1 and u becoming

very large as µ approaches −i.

The final answer for the remainder function in this regime is then obtained by adding

up all the contributions

R(u, u, u) = −π

6
+

1

3π
φ2 +

3

8

(

log2 u + 2Li2(1 − u)
)

, u =
1

4 cos2(φ/3)
(5.11)

This is the remainder function for the scattering of six gluons at strong coupling in the

particular kinematical configuration in which all the cross-ratios ui coincide.
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Fig. 16: Remainder function (5.11) at strong coupling for u1 = u2 = u2 = u

5.2. A curious observation

The remainder function at two loops for the case at hand was extensively considered in

[42], based on previous work [13,12,43]. In that paper the remainder function was computed

numerically for several values of u (in particular, u = 1/9, 1/4, 1, 3.83 and u = 100). We

could try to fit their numerics by a function with some arbitrary coefficients but the general

structure of (5.11) , similar to what it was done in [44] for the case of the octagon in AdS3.

More precisely, we consider a function of the form

Rc1,c2,c3
= c1

(

−π

6
+

1

3π
φ2

)

+ c2
3

8

(

log2 u + 2Li2(1 − u)
)

+ c3 (5.12)

The idea is that the high temperature of the TBA equations are not too sensitive to the

precise form of the kernels, so that perhaps this functional form holds for all values of the

coupling. In addition, in our computation, the two terms arise in a somewhat independent

fashion, so we have given us the freedom to change their relative coefficients11. It turns

out that for certain values of c′s, namely c1 ≈ 12.2, c2 ≈ 11.4, c3 ≈ −9.1, we get a quite

good approximation of the two loops result, see the following figure

11 Note that we obtain that c1/c2 ≈ 1.07, which is close to one, so perhaps we should not change

the relative coefficients of the two terms!
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[42], based on previous work [13,12,43]. In that paper the remainder function was computed

numerically for several values of u (in particular, u = 1/9, 1/4, 1, 3.83 and u = 100). We
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The idea is that the high temperature of the TBA equations are not too sensitive to the

precise form of the kernels, so that perhaps this functional form holds for all values of the

coupling. In addition, in our computation, the two terms arise in a somewhat independent

fashion, so we have given us the freedom to change their relative coefficients11. It turns

out that for certain values of c′s, namely c1 ≈ 12.2, c2 ≈ 11.4, c3 ≈ −9.1, we get a quite

good approximation of the two loops result, see the following figure

11 Note that we obtain that c1/c2 ≈ 1.07, which is close to one, so perhaps we should not change

the relative coefficients of the two terms!
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Note that this value agrees with the value conjectured in [24]. The asymptotic behaviour

of R(2)
6,WL(u, u, u) for u → 0 can be obtained in a similar way using MBasymptotics, which

leaves us with at most trivial onefold integrals. The result is

R(2)
6,WL(u, u, u) =

π2

8
ln2 u +

17π4

1440
+ O(u) . (5.2)

Finally, the asymptotic value for large u is obtained in exactly the same way. We can

perform a rescaling u → λ−1 u and expand around small values of λ using MBasymptotics.

We find

lim
u→∞

R(2)
6,WL(u, u, u) = − π4

144
+ O(1/u) # −0.67645... , (5.3)

in very good agreement with the numerical value quoted in [24].

For u = 1/2, the denominator in eq. (3.12) drastically simplifies. Repeating the deriva-

tion of section 3, we obtain,

R(2)
6,WL

(
1

2
,
1

2
,
1

2

)

= −105

64
ζ3 ln 2 − 5

64
ln4 2 +

5

64
π2 ln2 2 − 15

8
Li4

(
1

2

)

+
17π4

2304

# −1.26609 . . . .

(5.4)

Let us now turn to the generic case where all three cross ratios are equal but they still

take generic values. In this limit it is easy to see that eqs. (3.22) and (C.16) reduce to

u(±)
ijk → µ(±) =

1 ±
√

1 − 4u

2u
, v(±)

ijk → ν(±) = ± 1√
1 − u

. (5.5)

We can massage the resulting expression and apply the reduction algorithm of appendix B

to simplify the expression as much as possible. In particular, we can remove all the de-

pendence on ν(±). As regards µ(±), we observe that similar arguments have already been

found in the strong coupling case [33].9 Note that for u = 1/4 the square roots in eq. (5.5)

vanish. This value corresponds to a regular hexagon in a space with a (2, 2) signature [33].

Using the relations of appendix E and F, we find,

R(2)
6,WL

(
1

4
,
1

4
,
1

4

)

= 3Li2

(
1

3

)

ln2 2 − 9

2
Li2

(
1

3

)

ln2 3 − 567

4
Li3

(
1

3

)

ln 2

+
543

4
Li3

(

−1

2

)

ln 2 +
567

8
Li3

(
1

3

)

ln 3 − 567

4
Li3

(

−1

2

)

ln 3 +
1323

16
ζ3 ln 2

+
945

32
ζ3 ln 3 − 39

32
ln4 2 − 257

64
ln4 3 +

173

8
ln 3 ln3 2 +

189

8
ln3 3 ln 2 − 543

16
ln2 3 ln2 2

− 63

16
π2 ln2 2 − 181

64
π2 ln2 3 +

189

2
Li4

(
1

2

)

+
1701

8
Li4

(
1

3

)

− 543

16
Li4

(

−1

3

)

+
555

2
Li4

(

−1

2

)

− 9

2
Li2

(
1

3

)2

− 567

16
S2,2

(

−1

3

)

− 567

4
S2,2

(

−1

2

)

− 2123π4

2880

# 1.08917 . . . .

(5.6)

9We are grateful to Paul Heslop for pointing out that

(1 − u) µ
(+) = 1 +

µ

xε

, (1 − u) µ
(−) = 1 +

1
µxε

,

where µ and xε are defined in [33].
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As µ is real and very large, u is very close to zero. As we approach µ = 1, u grows

until u = 1/4 at µ = 1. For u > 1/4, µ is a phase, with µ = −1 at u = 1 and u becoming

very large as µ approaches −i.
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This is the remainder function for the scattering of six gluons at strong coupling in the
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5.2. A curious observation

The remainder function at two loops for the case at hand was extensively considered in

[42], based on previous work [13,12,43]. In that paper the remainder function was computed

numerically for several values of u (in particular, u = 1/9, 1/4, 1, 3.83 and u = 100). We

could try to fit their numerics by a function with some arbitrary coefficients but the general

structure of (5.11) , similar to what it was done in [44] for the case of the octagon in AdS3.

More precisely, we consider a function of the form
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The idea is that the high temperature of the TBA equations are not too sensitive to the

precise form of the kernels, so that perhaps this functional form holds for all values of the

coupling. In addition, in our computation, the two terms arise in a somewhat independent

fashion, so we have given us the freedom to change their relative coefficients11. It turns

out that for certain values of c′s, namely c1 ≈ 12.2, c2 ≈ 11.4, c3 ≈ −9.1, we get a quite

good approximation of the two loops result, see the following figure

11 Note that we obtain that c1/c2 ≈ 1.07, which is close to one, so perhaps we should not change

the relative coefficients of the two terms!
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Note that this value agrees with the value conjectured in [24]. The asymptotic behaviour

of R(2)
6,WL(u, u, u) for u → 0 can be obtained in a similar way using MBasymptotics, which

leaves us with at most trivial onefold integrals. The result is

R(2)
6,WL(u, u, u) =

π2

8
ln2 u +

17π4

1440
+ O(u) . (5.2)

Finally, the asymptotic value for large u is obtained in exactly the same way. We can

perform a rescaling u → λ−1 u and expand around small values of λ using MBasymptotics.

We find

lim
u→∞

R(2)
6,WL(u, u, u) = − π4

144
+ O(1/u) # −0.67645... , (5.3)

in very good agreement with the numerical value quoted in [24].

For u = 1/2, the denominator in eq. (3.12) drastically simplifies. Repeating the deriva-

tion of section 3, we obtain,
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Let us now turn to the generic case where all three cross ratios are equal but they still

take generic values. In this limit it is easy to see that eqs. (3.22) and (C.16) reduce to

u(±)
ijk → µ(±) =

1 ±
√

1 − 4u

2u
, v(±)

ijk → ν(±) = ± 1√
1 − u

. (5.5)

We can massage the resulting expression and apply the reduction algorithm of appendix B

to simplify the expression as much as possible. In particular, we can remove all the de-

pendence on ν(±). As regards µ(±), we observe that similar arguments have already been

found in the strong coupling case [33].9 Note that for u = 1/4 the square roots in eq. (5.5)

vanish. This value corresponds to a regular hexagon in a space with a (2, 2) signature [33].

Using the relations of appendix E and F, we find,
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9We are grateful to Paul Heslop for pointing out that

(1 − u) µ
(+) = 1 +

µ

xε

, (1 − u) µ
(−) = 1 +

1
µxε

,

where µ and xε are defined in [33].
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Regular hexagons

As µ is real and very large, u is very close to zero. As we approach µ = 1, u grows

until u = 1/4 at µ = 1. For u > 1/4, µ is a phase, with µ = −1 at u = 1 and u becoming

very large as µ approaches −i.

The final answer for the remainder function in this regime is then obtained by adding

up all the contributions

R(u, u, u) = −π

6
+

1

3π
φ2 +

3

8

(

log2 u + 2Li2(1 − u)
)

, u =
1

4 cos2(φ/3)
(5.11)

This is the remainder function for the scattering of six gluons at strong coupling in the

particular kinematical configuration in which all the cross-ratios ui coincide.

!2 2 4
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R

Fig. 16: Remainder function (5.11) at strong coupling for u1 = u2 = u2 = u

5.2. A curious observation

The remainder function at two loops for the case at hand was extensively considered in

[42], based on previous work [13,12,43]. In that paper the remainder function was computed

numerically for several values of u (in particular, u = 1/9, 1/4, 1, 3.83 and u = 100). We

could try to fit their numerics by a function with some arbitrary coefficients but the general

structure of (5.11) , similar to what it was done in [44] for the case of the octagon in AdS3.

More precisely, we consider a function of the form
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+ c3 (5.12)

The idea is that the high temperature of the TBA equations are not too sensitive to the

precise form of the kernels, so that perhaps this functional form holds for all values of the

coupling. In addition, in our computation, the two terms arise in a somewhat independent

fashion, so we have given us the freedom to change their relative coefficients11. It turns

out that for certain values of c′s, namely c1 ≈ 12.2, c2 ≈ 11.4, c3 ≈ −9.1, we get a quite

good approximation of the two loops result, see the following figure

11 Note that we obtain that c1/c2 ≈ 1.07, which is close to one, so perhaps we should not change

the relative coefficients of the two terms!
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Finally, the asymptotic value for large u is obtained in exactly the same way. We can

perform a rescaling u → λ−1 u and expand around small values of λ using MBasymptotics.

We find

lim
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in very good agreement with the numerical value quoted in [24].
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Let us now turn to the generic case where all three cross ratios are equal but they still

take generic values. In this limit it is easy to see that eqs. (3.22) and (C.16) reduce to
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1 ±
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We can massage the resulting expression and apply the reduction algorithm of appendix B

to simplify the expression as much as possible. In particular, we can remove all the de-

pendence on ν(±). As regards µ(±), we observe that similar arguments have already been

found in the strong coupling case [33].9 Note that for u = 1/4 the square roots in eq. (5.5)

vanish. This value corresponds to a regular hexagon in a space with a (2, 2) signature [33].
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9We are grateful to Paul Heslop for pointing out that
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µ
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, (1 − u) µ
(−) = 1 +

1
µxε

,

where µ and xε are defined in [33].
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Conclusion
• Many new interesting mathematical structures appear 

beyond one-loop:
➡ A deeper understanding of these new functions and 

the relations among them might be required.

• Regge exactness of the (logarithm of the) Wilson loop in 
N=4 SYM provides a powerful tool for the analytic 
computation of Wilson loops.

• We applied this technique to the hexagon, and extracted 
in this way an analytic result for the two-loop six-point 
remainder function.
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