


# **On-Shell Methods for Collider Physics**



## Carola F. Berger *CTP, MIT*

Amplitudes 2010, May 5th, 2010



# **BlackHat and Sherpa**

BlackHat and Sherpa
It's 2010!
Outline

Introduction

**On-Shell Methods** 

Black Magic? BlackHat!

Summary and Outlook

## **BlackHat:**

## CFB, Zvi Bern, Lance Dixon, Fernando Febres Cordero, Darren Forde, Harald Ita, David Kosower, Daniel Maitre

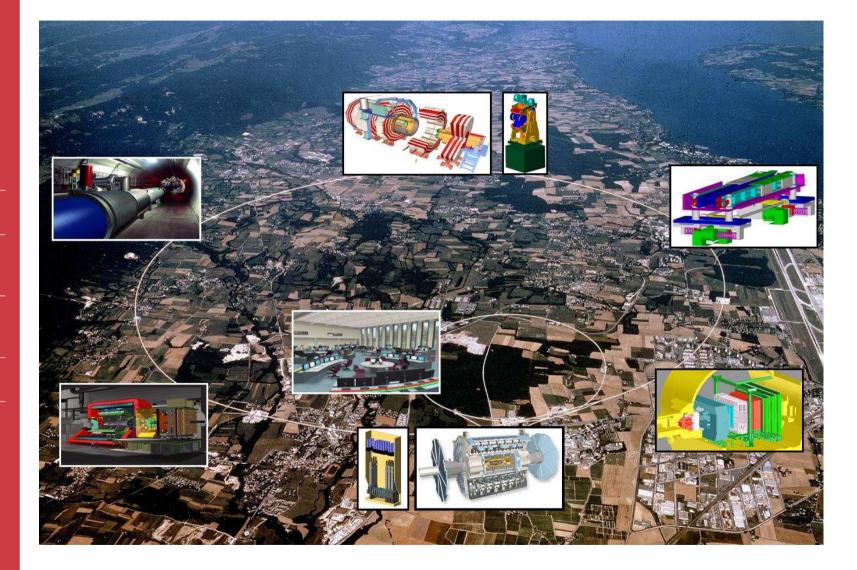
BlackHat: arXiv:1004.1659, PRD80 (2009) 074036, PRL102 (2009) 222001, PRD78 (2008) 036003. Badger: JHEP 0901 (2009) 049. Forde: PRD75 (2007) 125019. CFB, Bern, Dixon, Forde, Kosower: PRD74 (2006) 036009.

## Sherpa liaison (real emissions): Tanju Gleisberg

Gleisberg et al, JHEP 0902 (2009) 007. Gleisberg, Krauss, Eur. Phys. J C53 (2008) 501.



# It's 2010!


 BlackHat and Sherpa
 It's 2010!
 Outline

Introduction

**On-Shell Methods** 

Black Magic? BlackHat!

Summary and Outlook





# It's 2010!

 BlackHat and Sherpa
 It's 2010!
 Outline

Introduction

**On-Shell Methods** 

Black Magic? BlackHat!

Summary and Outlook



## Note the black hats



# Outline

- BlackHat and Sherpa ● It's 2010!
- Outline

Introduction

**On-Shell Methods** 

Black Magic? BlackHat!

Summary and Outlook

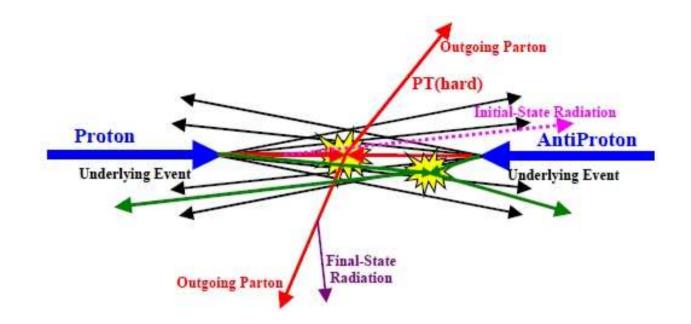
## Introduction - Precision Calculations

- On-Shell Methods
  - Generalized unitarity
  - Rational Terms recursion and D-dimensional unitarity
- Black Magic? BlackHat!
- Summary and Outlook

# **Hadron Collisions**

 BlackHat and Sherpa
 It's 2010!
 Outline

Plii


## Introduction Hadron Collisions

- Why NLO?
   Example: Single
   Top
   The LHC Wishlist
- Why Not (Yet) NLO?
- A Better Way?
- NLO Corrections
   to LHC Processes

## **On-Shell Methods**

Black Magic? BlackHat!

Summary and Outlook



 $\sigma = f(x_1) \otimes f(x_2) \otimes \hat{\sigma}(x_1, x_2) \otimes$  other stuff

This talk is about the computation of the hard scattering  $\hat{\sigma}$ , which is perturbatively calculable for infrared-safe observables



BlackHat and

Sherpa

It's 2010!

Introduction

• Why NLO?

• Why Not (Yet)

• A Better Way?

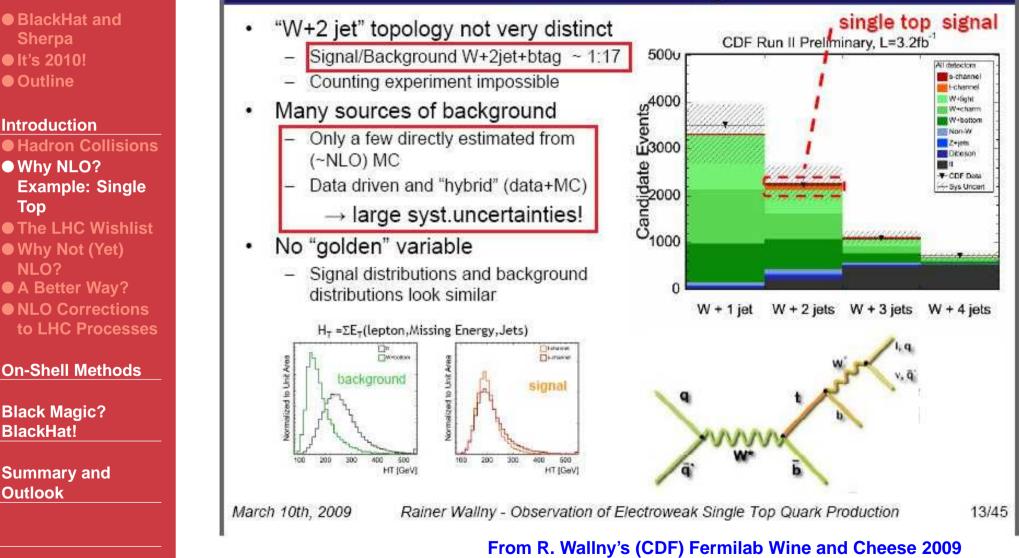
**On-Shell Methods** 

**Black Magic?** BlackHat!

Summary and

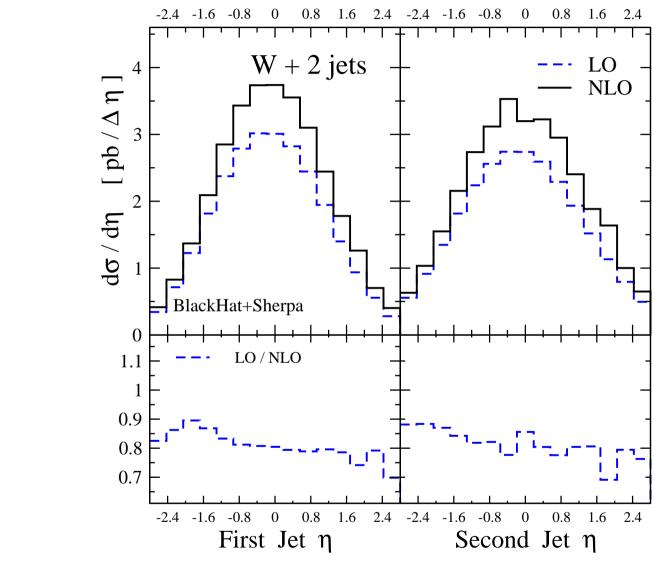
Outlook

Top


NLO?

**Example: Single** 

Outline

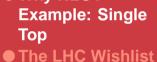

# Why NLO? Example: Single Top

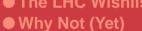
# The Challenge



**Carola F. Berger** Amplitudes 2010, May 5th, 2010 **On-Shell Methods for Collider Physics - 7/36** 

# Why NLO? Example: Single Top - Shape!!





CFB et al (BlackHat + SHERPA)

BlackHat and

Sherpa ● It's 2010!

Plii





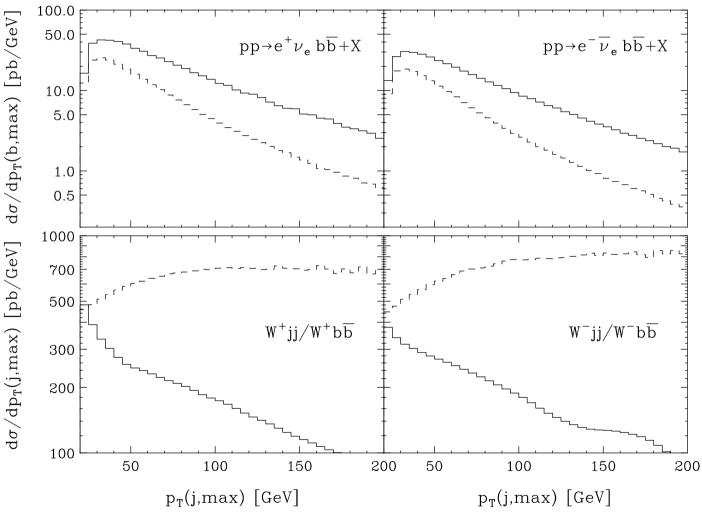
NLO? ● A Better Way?

NLO Corrections
 to LHC Processes

**On-Shell Methods** 

Black Magic? BlackHat!

Summary and Outlook

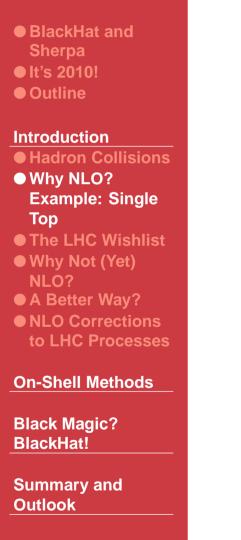

# Why NLO? Example: Single Top - Shape!!

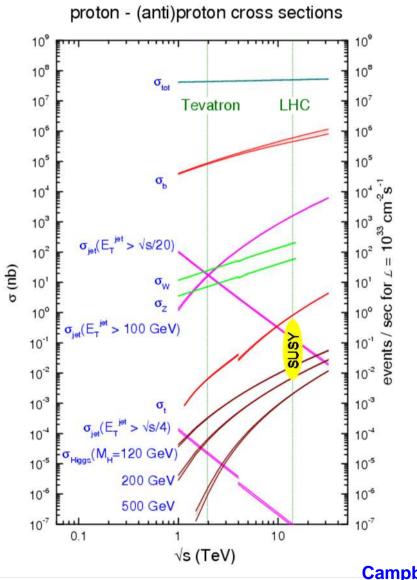
# Leading jet $p_T$ distribution of $Wb\overline{b}$ events LO dashed, NLO solid



Шii

Summary and Outlook





## Campbell, Ellis, Rainwater



# Why NLO?

## From the Tevatron to the LHC...





Campbell, Huston, Stirling



## ● BlackHat and Sherpa ● It's 2010!

Outline

Introduction

- Hadron Collisions
   Why NLO?
   Example: Single
   Top
   The LHC Wishlist
- Why Not (Yet)
- NLO?
- A Better Way?
- NLO Corrections to LHC Processes

**On-Shell Methods** 

Black Magic? BlackHat!

Summary and Outlook

# Why NLO?

## From the Tevatron to the LHC...





## BlackHat and Sherpa It's 2010!

Outline

## Introduction

- Hadron Collisions
   Why NLO?
   Example: Single
   Top
- The LHC Wishlist
- Why Not (Yet) NLO?
- A Better Way?
- NLO Corrections to LHC Processes
- **On-Shell Methods**

Black Magic? BlackHat!

Summary and Outlook

# The (In)Famous Wishlist

|                                    | Les Houches 2005                           |
|------------------------------------|--------------------------------------------|
| process wanted at NLO              | background to                              |
| ( $V \in \{Z, W, \gamma\}$ )       |                                            |
| 1. $pp  ightarrow VV + $ jet       | $tar{t}H$ , new physics                    |
| 2. $pp  ightarrow H+2$ jets        | H production by                            |
|                                    | vector boson fusion (VBF)                  |
| 3. $pp  ightarrow t ar{t} b ar{b}$ | $tar{t}H$                                  |
| 4. $pp  ightarrow tar{t} + 2$ jets | $tar{t}H$                                  |
| 5. $pp  ightarrow VV b ar{b}$      | $VBF 	o H 	o VV$ , $tar{t}H$ , new physics |
| 6. $pp  ightarrow VV + 2$ jets     | VBF 	o H 	o VV                             |
| 7. $pp  ightarrow V + 3$ jets      | new physics                                |
| 8. $pp  ightarrow VVV$             | SUSY trilepton                             |

Les Houches 2005



**Outlook** 

# The (In)Famous Wishlist

|                                                            | process wanted at NLO                            | background to                                              |
|------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|
| ● BlackHat and                                             | ( $V \in \{Z, W, \gamma\}$ )                     |                                                            |
| Sherpa<br>● It's 2010!                                     | 1. $pp  ightarrow VV + 	ext{ jet}$               | $tar{t}H$ , new physics                                    |
| ● Outline                                                  | <b>2.</b> $pp  ightarrow H+2$ jets               | H production by                                            |
| Introduction                                               |                                                  | vector boson fusion (VBF)                                  |
| <ul> <li>Hadron Collisions</li> <li>Why NLO?</li> </ul>    |                                                  | gg: Campbell, Ellis, Zanderighi                            |
| Example: Single                                            | 3. $pp  ightarrow t ar{t} b ar{b}$               | $t\bar{t}H$                                                |
| Top<br>● The LHC Wishlist                                  | 4. $pp  ightarrow tar{t}+2$ jets                 | $t\bar{t}H$                                                |
| ● Why Not (Yet)<br>NLO?                                    | <b>5.</b> $pp \rightarrow VVb\overline{b}$       | VBF $ ightarrow H  ightarrow VV$ , $tar{t}H$ , new physics |
| <ul> <li>A Better Way?</li> <li>NLO Corrections</li> </ul> | 6. $pp  ightarrow VV + 2$ jets                   | VBF 	o H 	o VV                                             |
| to LHC Processes                                           |                                                  | VBF: Bozzi, Jäger, Oleari, Zeppenfeld                      |
| On-Shell Methods                                           | 7. $pp  ightarrow V + 3$ jets                    | new physics                                                |
| Black Magic?                                               | 8. $pp \rightarrow VVV$                          | SUSY trilepton                                             |
| BlackHat!                                                  |                                                  | ZZZ: Lazopoulos, Melnikov, Petriello                       |
| Summary and                                                | 9. $pp  ightarrow b \overline{b} b \overline{b}$ | Higgs and new physics                                      |

## partially completed, via standard methods

**On-Shell Methods for Collider Physics - 11/36** 

Les Houches 2007



# The (In)Famous Wishlist

|                                                             | process wanted at NLO                         | background to                                                                                 |
|-------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------|
| ● BlackHat and                                              | 1. $pp  ightarrow VV + 	ext{ jet}$            | $tar{t}H$ , new physics                                                                       |
| Sherpa<br>● It's 2010!                                      |                                               | Dittmaier, Kallweit, Uwer; Campbell, Ellis, Zanderighi                                        |
| ● Cutline                                                   | <b>2.</b> $pp \rightarrow H + 2$ jets         | H in VBF                                                                                      |
| Introduction                                                |                                               | Campbell, Ellis, Zanderighi; Ciccolini, Denner Dittmaier                                      |
| Hadron Collisions                                           | 3. $pp  ightarrow t ar{t} b b$                | ttH Bredenstein, Denner Dittmaier, Pozzorini;                                                 |
| Why NLO?<br>Example: Single                                 |                                               | Bevilacqua, Czakon, Papadopoulos, Pittau, Worek                                               |
| Тор                                                         | 4. $pp \rightarrow t\bar{t} + 2$ jets         | ttH Bevilacqua, Czakon, Papadopoulos, Worek                                                   |
| <ul> <li>The LHC Wishlist</li> <li>Why Not (Yet)</li> </ul> | <b>5.</b> $pp \rightarrow VVbb$               | $VBF 	o H 	o VV$ , $tar{t}H$ , new physics                                                    |
| NLO?                                                        | 6. $pp  ightarrow VV + 2$ jets                | VBF 	o H 	o VV                                                                                |
| <ul> <li>A Better Way?</li> <li>NLO Corrections</li> </ul>  |                                               | VBF: Bozzi, Jäger, Oleari, Zeppenfeld                                                         |
| to LHC Processes                                            | 7. $pp  ightarrow V + 3$ jets                 | new physics                                                                                   |
| On-Shell Methods                                            |                                               | CFB, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita,                                      |
| Black Magic?                                                |                                               | Kosower, Maitre; Ellis, Melnikov, Zanderighi                                                  |
| BlackHat!                                                   | 8. $pp  ightarrow VVV$                        | SUSY trilepton                                                                                |
| Summary and<br>Outlook                                      |                                               | Lazopoulos, Melnikov, Petriello; Hankele, Zeppenfeld;<br>Binoth, Ossola, Papadopoulos, Pittau |
|                                                             | 9. $pp  ightarrow b\overline{b}b\overline{b}$ | Higgs, new physics GOLEM                                                                      |

**On-Shell Methods for Collider Physics - 11/36** 

2010



#### Introduction

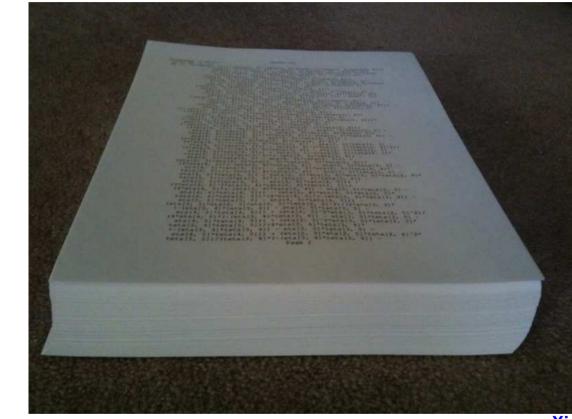
- Hadron Collisions
   Why NLO? Example: Single Top
   The LHC Wishlist
   Why Not (Yet)
- NLO?
  A Better Way?
  NLO Corrections to LHC Processes

## **On-Shell Methods**

Black Magic? BlackHat!

Summary and Outlook

# Why Not (Yet) NLO?


## **One-loop 6-gluon Feynman diagrams:**





# Why Not (Yet) NLO?

## Result for 1 helicity amplitude (rational part only):



Xiao, Yang, Zhu

BlackHat and Sherpa
It's 2010!
Outline

### Introduction

- Hadron Collisions
   Why NLO? Example: Single Top
   The LHC Wishlist
   Why Not (Yet) NLO?
- A Better Way?
   NLO Corrections to LHC Processes

## **On-Shell Methods**

Black Magic? BlackHat!

Summary and Outlook

**On-Shell Methods for Collider Physics - 12/36** 



BlackHat and

Sherpa ● It's 2010! Outline

Introduction

• Why NLO?

• Why Not (Yet)

• A Better Way?

**Black Magic?** 

Summary and

**BlackHat!** 

**Outlook** 

Тор

NLO?

# **A Better Way?**

+ sym. Hadron Collisions + sym. **Example: Single** • The LHC Wishlist  $2^{\dagger}$  $6^{+}$  NLO Corrections + 5<sup>+</sup> to LHC Processes  $5^{+}$ (b) (c) (a) **On-Shell Methods**  $2^{\dagger}$  $6^{\dagger}$  $\hat{3}^{-}$  $6^+$ 5<sup>+</sup> 5<sup>+</sup>  $6^{+}$ 5<sup>+</sup> (d) (f) (e)  $5^{+}$  $6^{+}$ 5<sup>+</sup> (g) (h)

**On-Shell Methods for Collider Physics - 13/36** 



## A Better Way?

## BlackHat and Sherpa It's 2010!

Outline

## Introduction

- Hadron Collisions
- Why NLO?
  Example: Since
- Example: Single Top
- The LHC Wishlist
- Why Not (Yet) NLO?
- A Better Way?
- NLO Corrections to LHC Processes

## **On-Shell Methods**

## Black Magic? BlackHat!

Summary and Outlook

# Result for the same helicity amplitude (rational part only):

#### $\hat{R}_{a}^{a}(1,3)$ [9.4]3 $2(13)^4$ $\frac{3(56)^{2}[12][13][34]}{9(12)(16)(23)(34)(45)(56)}$ $(13)^2(14)[24]$ $(1^{-}|(2+5)|4^{-}\rangle (13)^{2}(15)$ + $\frac{1}{6(16)(23)(24)(45)(56)[23]} + \frac{1}{2(14)(16)(25)^2(34)(56)[34]}$ $(1^{-}|(3+5)|4^{-})^{3}(1^{-}|(4+5)|3^{-})[35]$ $-\frac{3(2^{-}|(4+5)|3^{-}\rangle\langle 6^{-}|(1+2)|3^{-}\rangle\langle 12\rangle\langle 16\rangle\langle 45\rangle[34]^{2}s_{345}}{(34^{-})^{2}s_{345}}$ $[24]^3[36]^3$ $(1 \ 3)^3 (1 \ 5) [2 \ 5]$ $\frac{1}{3\left<5^{-}\right|\left(2+4\right)\left|3^{-}\right>^{2}\left[1\,3\right]\left[1\,6\right]\left[2\,3\right]\left[3\,4\right]}-\frac{1}{6\left<1^{-}\right|\left(3+4\right)\left|2^{-}\right>\left<1.6\right>\left(2.4\right>\left(2.5\right>\left(3.4\right>\left<5.6\right>\right)}$ $(13)^{2}(15)((1-|3(2+4)|5^{+}) + 4s_{24}(15))[24][56]$ $\frac{1}{6(1^{-}|(2+3)|4^{-}\rangle(1^{-}|(3+4)|2^{-}\rangle(24)(25)(45)(56)s_{234})}$ $s_{26} \langle 1^{-} | (4 + 5) | 3^{-} \rangle^{3} [45]^{3}$ $3(1^{-}|(3 + 4)|5^{-})(2^{-}|4 + 5|3^{-})^{2}(6^{-}|(1 + 2)|3^{-})^{2}[34]s_{345}$ $(5^{-}|(1 + 3)|6^{-})[26]s_{245}^{2}$ $3 \langle 4^{-}|(1+3)|6^{-}\rangle \langle 5^{-}|(2+4)|3^{-}\rangle \langle 26\rangle \langle 45\rangle \langle 56\rangle [13] [16]$ $(1^{-}|(2+3)|4^{-})^{2}(12)(15)[24]$ $(1.3)^3(4.6)[2.6]$ $-\frac{1}{6(4^{-}|(1+3)|2^{-}\rangle\langle 12\rangle\langle 26\rangle\langle 34\rangle\langle 45\rangle\langle 56\rangle} + \frac{1}{2(1^{-}|(2+4)|3^{-}\rangle\langle 16\rangle\langle 25\rangle^{2}(56)[34]s_{234}}{(1^{-}|(2+4)|3^{-}\rangle\langle 16\rangle\langle 25\rangle^{2}(56)[34]s_{234}}$ $(13)^3(15)(25)[45][56]$ $+ \frac{1}{6 \left< 1^{-} \right| \left< 2 + 3 \right> \left< 4^{-} \right> \left< 2^{-} \right| \left< 1 + 3 \right> \left< 6^{-} \right> \left< 1 + 3 \right> \left< 2 +$ $(1^{-}|(3+5)|4^{-})((15)[54] + (1^{-}|(3+5)|4^{-}))(15)^{2}[45]$ $6(12)(16)(25)(45)(56)[34]^2s_{345}$ $(1^{-}|(3+5)|4^{-}\rangle^{2}(15)^{2}[45]$ $(5^{-}|(1+3)|2^{-})^{3}/(46)[45]$ $=\frac{1}{2\left(1^{-}\left|\left(4+5\right)\right|^{3}\right)\left(16\right)\left(25\right)^{2}\left(56\right)\left[34\right]s_{345}}}=\frac{1}{3\left(6^{-}\left|\left(1+2\right)\right|^{2}\right)\left(45\right)^{2}\left(56\right)^{2}\left(12\right)\left[13\right]s_{123}}}$ $(2(12)[24] + (13)[34])(1^{-}|(2+3)|4^{-})(12)[24]$ 6(16)(24)(25)(56)[34]28224 $(13)^{2}((12)^{2}(45)[24] - (15)^{2}(24)[45])$ + $\frac{1}{6(12)(16)(24)(25)(34)(45)(56)[34]}$ $((13)[32] + 2(14)[42])(1^{-}|(3+4)|2^{-})(14)[24]$ $6(16)(24)(45)(56)[23]^2s_{234}$ $(s_{45} + s_{56})\langle 1 3 \rangle^3 [4 6]^2$ + $\frac{1}{3(1^{-}|(2+3)|4^{-}\rangle \langle 2^{-}|(1+3)|6^{-}\rangle \langle 23\rangle \langle 45\rangle \langle 56\rangle s_{123}}$ $(1^{-}|(2+4)|3^{-})^{3}|24|^{3}$ $-\frac{3(5^{-}|(2+4)|3^{-}\rangle(16)(24)(56)[23]^{2}[34]^{2}s_{234}}{3(5^{-}|(2+4)|3^{-}\rangle(16)(24)(56)[23]^{2}[34]^{2}s_{234}}$ $(6^{-}|(1+3)|2^{-})^{2}|26|s_{123}$ $\overline{3(4^{-}|(1+3)|2^{-}\rangle(26)^{2}(45)(56)[12][13][23]}$ $(5^{-}|(1+3)|2^{-})(6^{-}|(1+3)|2^{-})^{2}[26]$ $3(4^{-}|(1+3)|2^{-}\rangle (6^{-}|(1+2)|3^{-}\rangle (45)(56)^{2}|12|[13]$ $(s_{12} + s_{23}) \langle 6^- | (1 + 3) | 2^- \rangle \langle 1 6 \rangle^2 [2 6] s_{123}$ $\overline{6(4^{-}|(1+3)|2^{-})(6^{-}|(1+2)|3^{-})(12)(26)^{2}(45)(56)[12][23]}$ $(1^{-}|(5+6)(2+4)|5^{+})^{2}(15)^{2}[24][56]$ $\frac{1}{2(1^{-}|(2+4)|3^{-})(1^{-}|(3+4)|2^{-})(5^{-}|(2+4)|3^{-})(25)^{2}(45)(56)s_{234}}$ $(1^{-}|(3 + 4)|2^{-})(5^{-}|(1 + 3)|6^{-})(15)[36]s_{245}^{2}$ $\overline{3\left(2^{-} \left| \left(4+5\right) \left|3^{-}\right\rangle \left\langle4^{-} \right| \left(1+3\right) \left|6^{-}\right\rangle \left\langle5^{-} \right| \left(2+4\right) \left|3^{-}\right\rangle^{2} \left\langle1.6\right\rangle \left\langle4.5\right\rangle \left\langle5.6\right\rangle [1.6]\right.}\right.}$ $(5^{-}|(1+3)|6^{-}\rangle \langle 13\rangle [25][36]((5^{-}|(2+4)|3^{-}\rangle \langle 13\rangle + 2\langle 15\rangle s_{245})$ $+ \frac{1}{3(2^{-}|(4+5)|3^{-}\rangle\langle 4^{-}|(1+3)|6^{-}\rangle\langle 5^{-}|(2+4)|3^{-}\rangle\langle 16\rangle\langle 45\rangle\langle 56\rangle[16]}{(2^{-}|(2+4)|3^{-}\rangle\langle 16\rangle\langle 45\rangle\langle 56\rangle[16]}$

 $(1^{-}|(2+6)(4+5)|6^{+})^{2}(12)(16)[26][45]$  $-\frac{2(1^{-}|(3+4)|5^{-})(1^{-}|(4+5)|3^{-})(6^{-}|(1+2)|3^{-})(26)^{2}(45)(56)s_{345}}{(56)s_{345}}$  $(1^{-}|(2+6)(4+5)|6^{+}\rangle (16)((1^{-}|3(4+5)|6^{+}\rangle + 2s_{45}(16))[26][45]$  $6 \langle 1^{-} | (3 + 4) | 5^{-} \rangle \langle 6^{-} | (1 + 2) | 3^{-} \rangle^{2} \langle 2 6 \rangle \langle 4 5 \rangle \langle 5 6 \rangle s_{345}$  $(1^{-}|(2+6)(4+5)|2^{+}\rangle (12)((1^{-}|3(4+5)|2^{+}\rangle + 2s_{45}(12))[26][45]$  $6 \langle 1^{-}|(3 + 4)|5^{-}\rangle \langle 2^{-}|(4 + 5)|3^{-}\rangle^{2} \langle 25\rangle \langle 26\rangle \langle 45\rangle s_{345}$  $_{+}\left<1^{-}|\left(2+3\right)|4^{-}\right>\left(1^{-}|\left(3+4\right)|2^{-}\right>\left[2\,4\right]\left(-\langle1\,2\rangle^{2}\langle4\,5\rangle[2\,3]+\langle1\,4\rangle^{2}\langle2\,5\rangle[3\,4]\right)$  $2(1^{-}|(2+4)|3^{-})(16)(24)(25)(45)(56)[23][34]_{8234}$  $(13)^3 (46)^2 [26] (2(1-|2(5+6)|4^+) + (1-|65|4^+) + (14)(26)[26])$  $2\left<1^{-}\right|\left(3+4\right)|5^{-}\right>\left<4^{-}\right|\left(1+3\right)|2^{-}\right>\left<14\right>\left<26\right>^{2}\left<34\right>\left<45\right>^{2}\left<56\right>$  $(5^{-}|(1+3)|6^{-})^{2}(15)(3(2^{-}|(4+5)|6^{-})(15) - (13)(25)[36])[56]_{8245}$  $\frac{1}{6(2^{-}|(4+5)|6^{-}\rangle\langle 4^{-}|(1+3)|6^{-}\rangle\langle 5^{-}|(2+4)|3^{-}\rangle\langle 16\rangle\langle 25\rangle^{2}\langle 45\rangle\langle 56\rangle[16][36]}{6(2^{-}|(2+4)|3^{-}\rangle\langle 16\rangle\langle 25\rangle^{2}\langle 45\rangle\langle 56\rangle[16][36]}$  $(13)^{3}(15)((14)(15)(24)(25)[25]^{2} - (1^{-}|52|4^{+})(16)(45)[56])$  $\frac{1}{2\langle 1^{-} | (3+4) | 2^{-} \rangle \langle 4^{-} | (1+3) | 6^{-} \rangle \langle 14 \rangle \langle 16 \rangle^{2} \langle 24 \rangle \langle 25 \rangle^{2} \langle 34 \rangle \langle 56 \rangle}{2\langle 16 \rangle^{2} \langle 16 \rangle^{2$  $(1^{-}|(2+6)(4+5)|2^{+}\rangle (12)[26][45]$ +  $\frac{1}{2 \langle 1^{-} | (3+4) | 5^{-} \rangle \langle 1^{-} | (4+5) | 3^{-} \rangle \langle 2^{-} | (4+5) | 3^{-} \rangle \langle 25 \rangle^{2} \langle 26 \rangle^{2} \langle 45 \rangle s_{345}}$  $\times (\langle 1^{-} | (2+6)(4+5) | 2^{+} \rangle \langle 16 \rangle \langle 25 \rangle + \langle 1^{-} | (2+6)4 | 5^{+} \rangle \langle 12 \rangle \langle 26 \rangle)$  $(5^{-}|(1+3)|6^{-})^{3}$  $\frac{1}{3(2^{-}|(4+5)|3^{-})(2^{-}|(4+5)|6^{-})(5^{-}|(2+4)|3^{-})(45)(56)[16]}$  $\left(\frac{\langle 4\,6\rangle [3\,6] [4\,5]}{\langle 4\,5\rangle [1\,3]} + \frac{\langle 1\,2\rangle [5\,6] s_{245}}{\langle 4^-|\,(1+3)\,|6^-\rangle\,\langle 2\,5\rangle}\right)$  $\langle 1 3 \rangle^3 (\langle 1 5 \rangle \langle 2 6 \rangle \langle 4 5 \rangle [2 5] (6 \langle 1 5 \rangle \langle 2 4 \rangle + \langle 1 4 \rangle \langle 2 5 \rangle) + 2 \langle 1 4 \rangle \langle 1 6 \rangle \langle 2 5 \rangle^2 \langle 4 6 \rangle [2 6] )$  $6 \left< 4^- \right| \left(1+3\right) \left| 6^- \right> \left< 1.4 \right> \left< 1.6 \right>^2 \left< 2.5 \right>^2 \left< 2.6 \right> \left< 3.4 \right> \left< 4.5 \right> \left< 5.6 \right>$ (15)<sup>3</sup>[24]<sup>2</sup>[56]  $\overline{6(1^{-}|(2+3)|4^{-})(1^{-}|(3+4)|2^{-})(5^{-}|(2+4)|3^{-})(25)(45)(56)^{2}|23|[34]_{s_{234}}}$ ×  $(2(64)[43](14)(25)[24]^2 + 2(62)[23](12)(45)[24]^2 - 5s_{24}(13)(56)[23][34])$  $(2^{-}|(1+3)|6^{-}\rangle \langle 12\rangle [26]s_{245}$ +  $\frac{1}{6(2^{-}|(4+5)|3^{-}\rangle\langle 4^{-}|(1+3)|6^{-}\rangle\langle 16\rangle\langle 25\rangle^{2}\langle 26\rangle^{2}\langle 45\rangle\langle 56\rangle[16][36]}$  $\times (3 \langle 6^{-} | (1+3) | 6^{-} \rangle \langle 1 6 \rangle \langle 2 5 \rangle^{2} - 3 \langle 5^{-} | (1+3) | 6^{-} \rangle \langle 1 5 \rangle \langle 2 6 \rangle^{2}$  $-\langle 1 3 \rangle \langle 2 5 \rangle \langle 2 6 \rangle \langle 5 6 \rangle [3 6] \rangle$ (13)3  $(12)(15)^{2}[25]^{3}$  $\frac{3(1^{-}|(3+4)|5^{-})(4^{-}|(1+3)|6^{-})(34)(56)}{(1^{-}|(3+4)|2^{-})(16)^{2}(25)}$  $(14)[25]^2[26]^2$  $\langle 24 \rangle \langle 46 \rangle^2 [26]^3$  $\frac{1}{(1^{-}|(3+4)|2^{-}\rangle\langle 4^{-}|(1+3)|2^{-}\rangle} + \frac{1}{(4^{-}|(1+3)|2^{-}\rangle\langle 26\rangle\langle 45\rangle^{2}}$  $-\frac{[2\,6]s_{245}^2}{3\,\langle 2^-|\,\langle 4+5\rangle\,|3^-\rangle\,\langle 4^-|\,\langle 1+3\rangle\,|6^-\rangle\,\langle 5^-|\,\langle 2+4\rangle\,|3^-\rangle\,\langle 1\,6\rangle\langle 2\,5\rangle\langle 2\,6\rangle\langle 4\,5\rangle\langle 5\,6\rangle[1\,3][1\,6]\rangle\,\langle 1\,6\rangle\langle 4\,5\rangle\langle 5\,6\rangle[1\,3][1\,6]\rangle\,\langle 1\,6\rangle\langle 4\,5\rangle\langle 5\,6\rangle\langle 4\,5\rangle\langle 5\,6\rangle[1\,3][1\,6]\rangle\,\langle 4\,6\rangle\langle 4\,5\rangle\langle 5\,6\rangle\langle 6\,6\rangle\langle 6\,6\rangle\langle$  $\times \left( \left\langle 5^{-} | (1+3) | 6^{-} \right\rangle \left\langle 1 2 \right\rangle [1 3] \left( \left\langle 1 2 \right\rangle \left\langle 5 6 \right\rangle - \left\langle 1 6 \right\rangle \left\langle 2 5 \right\rangle \right) \right) \right)$  $-\langle 1^{-}|(3+6)(1+3)|2^{+}\rangle \langle 25\rangle \langle 56\rangle [36]\rangle$  $(1.3)^{2}$ +  $\frac{1}{6(1^{-}|(3+4)|5^{-}\rangle(14)(16)(25)^{2}(26)^{2}(34)(45)^{2}(56)}$ ×  $(6(15)^2(24)(26)^2(45)[25] - 2(14)(15)(25)(26)^2(45)[25]$  $-6\langle 16 \rangle^{2} \langle 24 \rangle \langle 25 \rangle^{2} \langle 46 \rangle [26] + 5\langle 14 \rangle \langle 16 \rangle \langle 25 \rangle^{2} \langle 26 \rangle \langle 46 \rangle [26] \rangle$  $(12)(13)^3(15)^2(24)[25]^2$ +  $(1^{-}|(3 + 4)|5^{-})(4^{-}|(1 + 3)|6^{-})(14)(16)^{2}(25)^{2}(34)(56)$  $(12)(13)^{3}(24)^{2}[25][26]$  $= \frac{2 \langle 1^{-} | (3 + 4) | 5^{-} \rangle \langle 4^{-} | (1 + 3) | 6^{-} \rangle \langle 1 4 \rangle \langle 2 5 \rangle \langle 2 6 \rangle^{2} \langle 3 4 \rangle \langle 4 5 \rangle}{2 \langle 1 4 \rangle \langle 2 5 \rangle \langle 2 6 \rangle^{2} \langle 3 4 \rangle \langle 4 5 \rangle \langle 4 \delta \rangle \langle 4$  $(12)(13)^{3}(15)(24)[25][26]$ +  $\frac{1}{2(1^{-}|(3+4)|5^{-})(4^{-}|(1+3)|6^{-})(14)(16)(25)^{2}(34)(56)}$  $(13)^3(14)[25][26]$  $-\frac{1}{6 \langle 1^{-} | (3+4) | 5^{-} \rangle \langle 4^{-} | (1+3) | 6^{-} \rangle \langle 1 6 \rangle \langle 3 4 \rangle \langle 4 5 \rangle \langle 5 6 \rangle}{6 \langle 1^{-} | (1+3) | 6^{-} \rangle \langle 1 6 \rangle \langle 1$  $(13)^3(24)[25][26]$  $2\langle 1^{-}|(3+4)|5^{-}\rangle\langle 4^{-}|(1+3)|6^{-}\rangle\langle 26\rangle\langle 34\rangle\langle 45\rangle\langle 56\rangle$  $(12)^{2}(13)^{3}(46)[25][26]$ 

<sup>+</sup><sup>2</sup>(1-|(3+4)|5-)(4-|(1+3)|6-)(14)(16)(25)(26)(34)(56)</sub>]. CFB, Bern, Dixon, Forde, Kosower



### Introduction

- Hadron Collisions
- Why NLO?
   Example: Single
   Top
- The LHC Wishlist
- Why Not (Yet) NLO?
- A Better Way?
- NLO Corrections to LHC Processes
- **On-Shell Methods**

Black Magic? BlackHat!

Summary and Outlook

# **NLO Corrections to LHC Processes**

Relevant processes all  $2 \rightarrow n \geq 3$  as listed in the experimenters' (in)famous Les Houches wishlist



### Introduction

- Hadron Collisions
- Why NLO?
   Example: Single
   Top
- The LHC Wishlist
- Why Not (Yet) NLO?
- A Better Way?
- NLO Corrections to LHC Processes

**On-Shell Methods** 

Black Magic? BlackHat!

Summary and Outlook

# **NLO Corrections to LHC Processes**

- Relevant processes all  $2 \rightarrow n \geq 3$  as listed in the experimenters' (in)famous Les Houches wishlist
- Real-virtual cancellations a solved problem, automated



- BlackHat and Sherpa
   It's 2010!
- Outline

## Introduction

- Hadron Collisions
- Why NLO? Example: Single
- ⊏хатт Тор
- The LHC Wishlist
- Why Not (Yet) NLO?
- A Better Way?
- NLO Corrections to LHC Processes

**On-Shell Methods** 

Black Magic? BlackHat!

Summary and Outlook

# **NLO Corrections to LHC Processes**

- Relevant processes all  $2 \rightarrow n \geq 3$  as listed in the experimenters' (in)famous Les Houches wishlist
- Real-virtual cancellations a solved problem, automated
- Bottleneck: 1-loop virtual amplitudes It took 12 years to go from 5-gluon 1-loop amplitudes to 6 gluons!

# l'liī

- BlackHat and Sherpa
   It's 2010!
- Outline

## Introduction

- Hadron Collisions
- Why NLO?
   Example: Single
   Top
- The LHC Wishlist
  Why Not (Yet)
- NLO?
- A Better Way?
- NLO Corrections to LHC Processes

**On-Shell Methods** 

Black Magic? BlackHat!

Summary and Outlook

# **NLO Corrections to LHC Processes**

- Relevant processes all  $2 \rightarrow n \geq 3$  as listed in the experimenters' (in)famous Les Houches wishlist
- Real-virtual cancellations a solved problem, automated
- Bottleneck: 1-loop virtual amplitudes It took 12 years to go from 5-gluon 1-loop amplitudes to 6 gluons!
- New methods based on (generalized) unitarity and recursion ⇒ new codes:
  - BlackHat

CFB, Bern, Dixon, Febres Cordero, Forde, Ita, Kosower, Maitre

Rocket (D-dim unitarity)

Ellis, Giele, Kunszt, Melnikov, Zanderighi

CutTools/OneLOop (D-dim unitarity at integrand level)

van Hameren, Ossola, Papadopoulos, Pittau

# l'liī

- BlackHat and Sherpa
   It's 2010!
- Outline

## Introduction

- Hadron Collisions
- Why NLO?
   Example: Single
   Top
- The LHC Wishlist
  Why Not (Yet)
- NLO?
- A Better Way?
- NLO Corrections to LHC Processes

**On-Shell Methods** 

Black Magic? BlackHat!

Summary and Outlook

# **NLO Corrections to LHC Processes**

- Relevant processes all  $2 \rightarrow n \geq 3$  as listed in the experimenters' (in)famous Les Houches wishlist
- Real-virtual cancellations a solved problem, automated
- Bottleneck: 1-loop virtual amplitudes It took 12 years to go from 5-gluon 1-loop amplitudes to 6 gluons!
- New methods based on (generalized) unitarity and recursion ⇒ new codes:
  - BlackHat

CFB, Bern, Dixon, Febres Cordero, Forde, Ita, Kosower, Maitre

Rocket (D-dim unitarity)

Ellis, Giele, Kunszt, Melnikov, Zanderighi

CutTools/OneLOop (D-dim unitarity at integrand level)

van Hameren, Ossola, Papadopoulos, Pittau



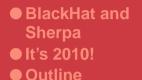
# **On-Shell Methods**

BlackHat and Sherpa
It's 2010!
Outline

## Introduction

## **On-Shell Methods**

- One-Loop
   Decomposition
- Generalized
   Unitarity
- Disentangling
   Coefficients
- Rational Terms from Recursion
- Recursion at Loop Level
- D-dim Unitarity
- BlackHat


Black Magic? BlackHat!

Summary and Outlook

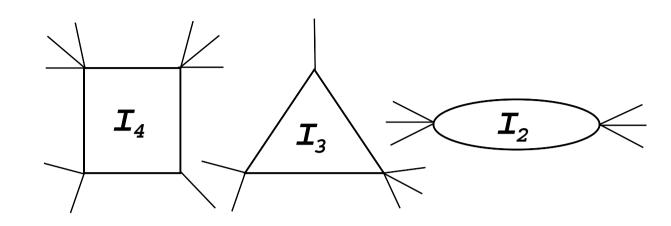


**On-Shell Methods for Collider Physics - 15/36** 

# **One-Loop Decomposition**



11;;


### Introduction

## On-Shell Methods • One-Loop Decomposition

- Generalized
   Unitarity
- Disentangling
   Coefficients
- Rational Terms from Recursion
- Recursion at Loop Level
- D-dim Unitarity
- BlackHat

Black Magic? BlackHat!

Summary and Outlook



Any *n*-leg (massless) one-loop amplitude expressible in terms of scalar box, triangle and bubble integrals:

 $\mathcal{A} = c_4 I_4 + c_3 I_3 + c_2 I_2 +$ rational

With massive partons there are additionally  $I_1$  (tadpoles)

We know the integrals, the task is to determine the coefficients Bern, Dixon, Dunbar, Kosower



- BlackHat and Sherpa
  It's 2010!
  Outline
- Introduction

### **On-Shell Methods**

- One-Loop
   Decomposition
- Generalized Unitarity
- Disentangling Coefficients
- Rational Terms from Recursion
- Recursion at Loop Level
- D-dim Unitarity
- BlackHat

## Black Magic? BlackHat!

Summary and Outlook

# **Generalized Unitarity**

$$egin{aligned} c_4 I_4 &= c_4 \int d^4 l rac{1}{l^2 (l-K_1)^2 (l-K_2)^2 (l-K_3)^2} \ & rac{1}{P^2 + iarepsilon} = rac{1}{P^2} + i \delta^+ (P^2) \end{aligned}$$

Box integrals have unique leading singularity  $\Rightarrow$  generalized unitarity

$$c_{4}\Delta_{LS}I_{4} = \int d^{4}l\delta^{+}(l^{2})\delta^{+}((l-K_{1})^{2})$$

$$\times \delta^{+}((l-K_{2})^{2})\delta^{+}((l-K_{3})^{2})$$

$$\times A_{1}^{\text{tree}}(l) \times A_{2}^{\text{tree}}(l) \times A_{3}^{\text{tree}}(l) \times A_{4}^{\text{tree}}(l)$$

$$c_{4} = A_{1}^{\text{tree}}(l_{\text{sol}}) \times A_{2}^{\text{tree}}(l_{\text{sol}}) \times A_{3}^{\text{tree}}(l_{\text{sol}}) \times A_{4}^{\text{tree}}(l_{\text{sol}})$$

## Tree graphs on shell Trees "recycled" into loops

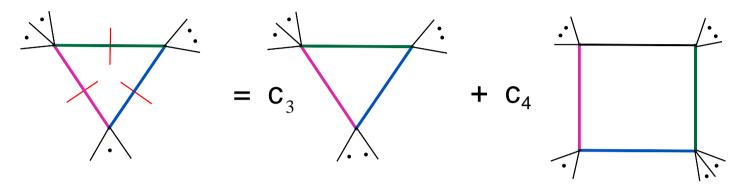
Britto, Cachazo, Feng

**On-Shell Methods for Collider Physics - 17/36** 



### Introduction

### **On-Shell Methods**


- One-Loop
   Decomposition
- Generalized Unitarity
- Disentangling Coefficients
- Rational Terms from Recursion
- Recursion at Loop Level
- D-dim Unitarity
- BlackHat

Black Magic? BlackHat!

Summary and Outlook

# **Generalized Unitarity contd.**

Triangle coefficients from triple cuts, bubble coefficients from double cuts.



But life's not so simple – "leakage" from higher-point integrals into lower point ones because integrals are not fully localized any more.

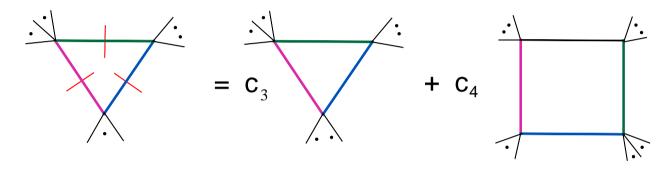
However, the singularity structures are unique – need procedure to disentangle coefficients: Clever parametrization of integral – read off coefficients directly Forde; Ossola, Papadopoulos, Pittau; Kilgore



### Introduction

## **On-Shell Methods**

- One-Loop
   Decomposition
- Generalized
   Unitarity
- Disentangling Coefficients
- Rational Terms from Recursion
- Recursion at Loop Level
- D-dim Unitarity
- BlackHat


## Black Magic? BlackHat!

Summary and Outlook

# **Disentangling Coefficients**

## Parametrization of loop momenta (schematically):

$$l_n^\mu = lpha_1 K_1^\mu + lpha_2 K_2^\mu + lpha_3 t K_3 (K_1, K_2)^\mu + rac{lpha_4}{t} K_4 (K_1, K_2)^\mu$$



## **Triple cut then gives:**

$$C_{3} = \sum_{j=-3}^{3} c_{j} t^{j} + \sum_{i} \frac{b_{i}}{\xi_{i}(t-t_{i})}$$

 $l_i^2(t) \sim \xi_i(t-t_i).$ 

Boxes have extra poles in t from propagators that go on-shell. But we know the boxes, so subtract them off.

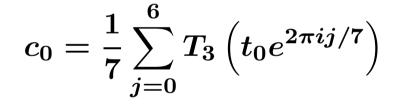


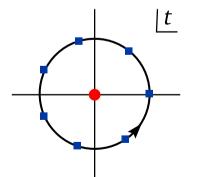
### Introduction

## **On-Shell Methods**

- One-Loop
   Decomposition
- Generalized
   Unitarity
- Disentangling
   Coefficients
- Rational Terms from Recursion
- Recursion at Loop Level
- D-dim Unitarity
- BlackHat

## Black Magic? BlackHat!


Summary and Outlook


# **Disentangling Coefficients contd.**

## **Triangle contributions after subtraction of boxes:**

$$T_3=\sum_{j=-3}^3 c_j t^j$$

 $c_0$  is the triangle coefficient, extract via discrete Fourier transform



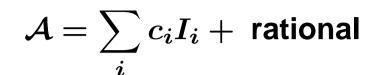


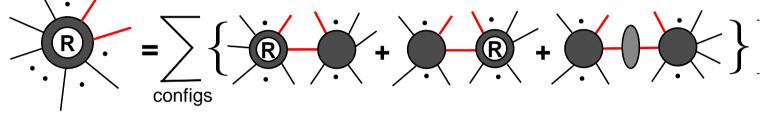
BlackHat: CFB, Bern, Dixon, Febres-Cordero, Forde, Ita, Kosower, Maitre

# **Rational Terms from Recursion**

BlackHat and Sherpa
It's 2010!
Outline

l liit


Introduction


## **On-Shell Methods**

- One-Loop
   Decomposition
- Generalized
   Unitarity
- Disentangling
   Coefficients
- Rational Terms from Recursion
- Recursion at Loop Level
- D-dim Unitarity
- BlackHat

Black Magic? BlackHat!

Summary and Outlook





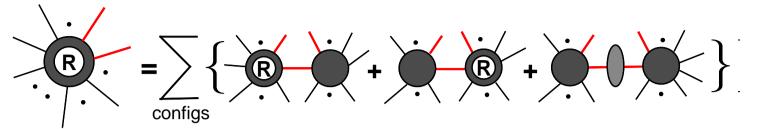


Not as simple as the analogous (BCFW) tree level recursion, CFB, Bern, Dixon, Forde, Kosower

Alternative approach (also in BlackHat): *D*-dimensional unitarity



- BlackHat and Sherpa
  It's 2010!
- Outline


### Introduction

## **On-Shell Methods**

- One-Loop
   Decomposition
- Generalized
   Unitarity
- Disentangling
   Coefficients
- Rational Terms from Recursion
- Recursion at Loop Level
- D-dim Unitarity
- BlackHat

Black Magic? BlackHat!

Summary and Outlook



## **Complex** continue amplitude

**Recursion at Loop Level** 

$$A(z) = C(z) + R(z) \qquad \left| \begin{array}{c} \frac{1}{2\pi i} \oint_C \frac{dz}{z} \\ \frac{A(0)}{z} = C(0) - \sum_{\text{poles } \alpha} \operatorname{Res}_{z=z_{\alpha}} \frac{R(z)}{z} \\ = C(0) + \sum_{\text{configs}} A_L \frac{1}{P_{l...m}^2} A_R \end{array} \right|$$

Loops "recycled" into loops (ignoring several subtleties)

CFB, Bern, Dixon, Forde, Kosower



 BlackHat and Sherpa
 It's 2010!
 Outline

### Introduction

### **On-Shell Methods**

- One-Loop
   Decomposition
- Generalized
   Unitarity
- Disentangling
   Coefficients
- Rational Terms from Recursion
- Recursion at Loop Level
- D-dim Unitarity
- BlackHat

Black Magic? BlackHat!

Summary and Outlook

# Rational Terms - D-dim Unitarity

Unitarity in  $D = 4 - 2\varepsilon$ : Split up into 4-D piece and  $(-2\varepsilon)$ -dim. piece ( $\sim$  small "mass")

$$\begin{split} l_D^2 &= l_4^2 + l_{[-2\varepsilon]}^2 = l_4^2 + \mu^2 \\ \int \frac{d^D l}{(2\pi)^D} &= \int \frac{d^4 l_4}{(2\pi)^4} \int \frac{d^{-\varepsilon}(\mu^2)}{(2\pi)^{-2\varepsilon}} \end{split}$$

Extract rational part R by keeping track of  $\mu$ -dependence in generalized unitarity cuts:

$$\mathcal{A} = c_4^{[0]} I_4^D[1] + c_4^{[2]} I_4^D[\mu^2] + c_4^{[4]} I_4^D[\mu^4] + c_3^{[0]} I_3^D[1] + \dots$$

$$I_n^D[\mu^{2r}] = \frac{1}{2^r} I_n^{D+2r}[1] \prod_{k=0}^{r-1} (D-4+k)$$

.



### Introduction

## **On-Shell Methods**

- One-Loop
   Decomposition
- Generalized
   Unitarity
- Disentangling
   Coefficients
- Rational Terms from Recursion
- Recursion at Loop Level
- D-dim Unitarity
- BlackHat

Black Magic? BlackHat!

Summary and Outlook

# Rational Terms - D-dim Unitarity contd.

$$\mathcal{A} = c_4^{[0]} I_4^D[1] + c_4^{[2]} I_4^D[\mu^2] + c_4^{[4]} I_4^D[\mu^4] + c_3^{[0]} I_3^D[1] + \dots$$

$$\begin{array}{ll} = & c_4^{[0]}I_4^D + \frac{D-4}{2}c_4^{[2]}I_4^{D+2} \\ & \quad + \frac{(D-4)(D-2)}{4}c_4^{[4]}I_4^{D+4} + c_3^{[0]}I_3^D + \dots \\ & \quad = & c_4^{[0]}I_4^{4-2\varepsilon} + c_3^{[0]}I_3^{4-2\varepsilon} + c_2^{[0]}I_2^{4-2\varepsilon} + R \end{array}$$

$$R = c_4^{[4]} \left. I_4^{4-2arepsilon}[\mu^4] \right|_{arepsilon=0} + c_3^{[2]} \left. I_3^{4-2arepsilon}[\mu^4] \right|_{arepsilon=0} + \dots$$

Badger, Forde. See also Ossola, Papadopoulos, Pittau (CutTools); Ellis, Giele, Kunszt, Melnikov, Zanderighi (Rocket).

.**A** 

**On-Shell Methods for Collider Physics - 24/36** 



# **BlackHat**

 BlackHat and Sherpa
 It's 2010!
 Outline

### Introduction

## **On-Shell Methods**

- One-Loop
   Decomposition
- Generalized Unitarity
- Disentangling
   Coefficients
- Rational Terms from Recursion
- Recursion at Loop Level
- D-dim Unitarity
- BlackHat

Black Magic? BlackHat!

Summary and Outlook

$$\mathcal{A} = \sum_i c_i I_i + ext{rational}$$

Cut parts from 4-D unitarity



# **BlackHat**

 BlackHat and Sherpa
 It's 2010!
 Outline

## Introduction

## **On-Shell Methods**

- One-Loop
   Decomposition
- Generalized
   Unitarity
- Disentangling
   Coefficients
- Rational Terms from Recursion
- Recursion at Loop Level
- D-dim Unitarity
- BlackHat

Black Magic? BlackHat!

Summary and Outlook

$$\mathcal{A} = \sum_i c_i I_i + \text{ rational}$$

Cut parts from 4-D unitarityRational parts from loop recursion



# **BlackHat**

- BlackHat and Sherpa
   It's 2010!
   Outline
- outine

## Introduction

## **On-Shell Methods**

- One-Loop
   Decomposition
- Generalized
   Unitarity
- Disentangling
   Coefficients
- Rational Terms from Recursion
- Recursion at Loop Level
- D-dim Unitarity
- BlackHat

Black Magic? BlackHat!

Summary and Outlook

$$\mathcal{A} = \sum_i c_i I_i + ext{ rational}$$

- Cut parts from 4-D unitarity
- Rational parts from loop recursion
- OR rational parts from D-dim unitarity
  - $\Rightarrow$  4-D unitarity with small "mass"



# **BlackHat**

- BlackHat and Sherpa
  It's 2010!
- Outline

#### Introduction

#### **On-Shell Methods**

- One-Loop
   Decomposition
- Generalized
   Unitarity
- Disentangling
   Coefficients
- Rational Terms from Recursion
- Recursion at Loop Level
- D-dim Unitarity
- BlackHat

Black Magic? BlackHat!

Summary and Outlook

$$\mathcal{A} = \sum_i c_i I_i + ext{ rational}$$

- Cut parts from 4-D unitarity
- Rational parts from loop recursion
- OR rational parts from D-dim unitarity
  - $\Rightarrow$  4-D unitarity with small "mass"
- Basic ingredients: tree amplitudes, low-point 1-loop amplitudes



# **BlackHat**

- BlackHat and Sherpa
   It's 2010!
- Outline

#### Introduction

#### **On-Shell Methods**

- One-Loop
   Decomposition
- Generalized
   Unitarity
- Disentangling
   Coefficients
- Rational Terms from Recursion
- Recursion at Loop Level
- D-dim Unitarity

BlackHat

Black Magic? BlackHat!

Summary and Outlook

$$\mathcal{A} = \sum_{i} c_{i} I_{i} + ext{ rational}$$

- Cut parts from 4-D unitarity
- Rational parts from loop recursion
- OR rational parts from D-dim unitarity
  - $\Rightarrow$  4-D unitarity with small "mass"
- Basic ingredients: tree amplitudes, low-point 1-loop amplitudes
- NO integrals or PV reductions are performed Numerically very stable, excellent scaling with number of external legs (number of Feynman graphs grows factorially)

# Pliī

## **BlackHat**

- BlackHat and Sherpa
   It's 2010!
- Outline

#### Introduction

#### **On-Shell Methods**

- One-Loop
   Decomposition
- Generalized
   Unitarity
- Disentangling
   Coefficients
- Rational Terms from Recursion
- Recursion at Loop Level
- D-dim Unitarity

BlackHat

Black Magic? BlackHat!

Summary and Outlook

$$\mathcal{A} = \sum_i c_i I_i + ext{ rational}$$

- Cut parts from 4-D unitarity
- Rational parts from loop recursion
- OR rational parts from D-dim unitarity
  - $\Rightarrow$  4-D unitarity with small "mass"
- Basic ingredients: tree amplitudes, low-point 1-loop amplitudes
- NO integrals or PV reductions are performed Numerically very stable, excellent scaling with number of external legs (number of Feynman graphs grows factorially)

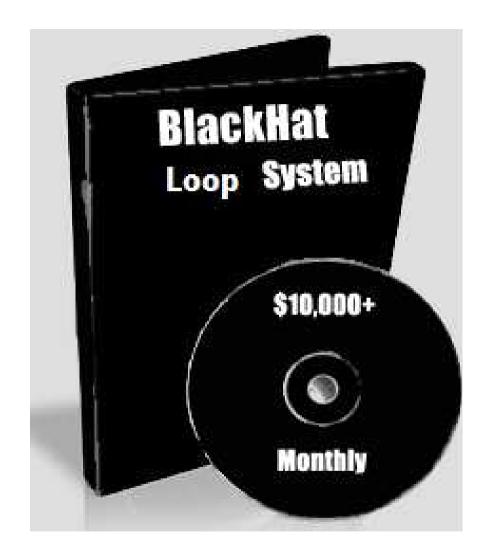
 $\Rightarrow$  summary in review: CFB, Forde, arXiv:0912.3534 (ARNPS)

## Black Magic? BlackHat! – Results

BlackHat and Sherpa
It's 2010!
Outline

PHiT

Introduction


**On-Shell Methods** 

Black Magic? BlackHat! • Tevatron

Ws and Zs
W + 3 Jets at the LHC
Z + 3 Jets at the Tevatron
Towards W + 4

Jets ● More to Come!

Summary and Outlook



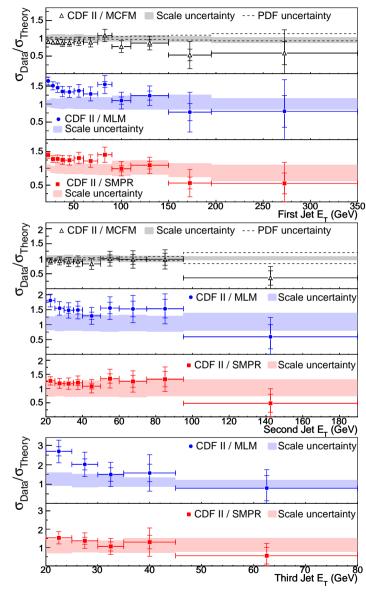
# W+1, 2, 3 jets at the Tevatron



Шï

Outline

#### Introduction

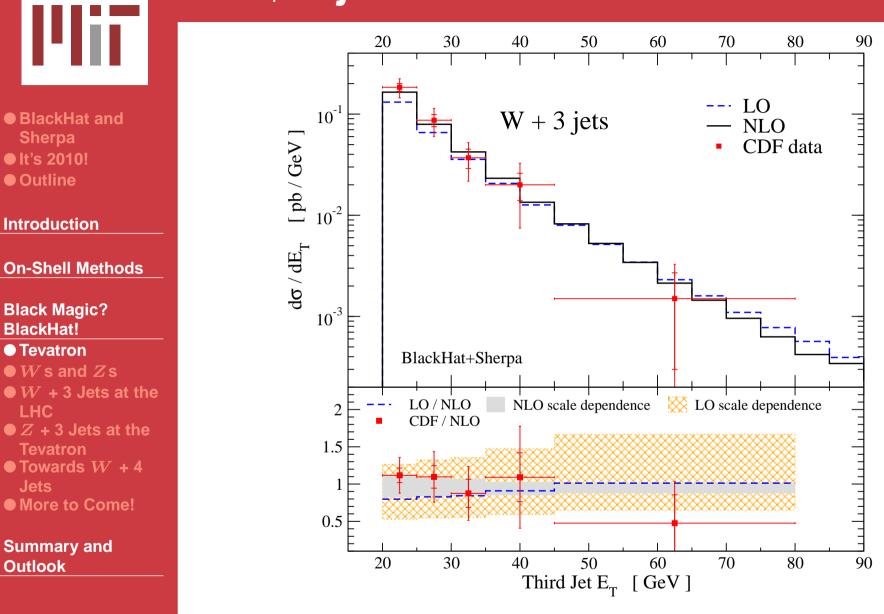

#### **On-Shell Methods**

#### Black Magic? BlackHat!

#### Tevatron

- ullet Ws and Zs
- W + 3 Jets at the LHC
- Z + 3 Jets at the Tevatron
- Towards W + 4 Jets
- More to Come!

Summary and Outlook




#### No MCFM for W + 3 jets

**CDF 2007** 

**On-Shell Methods for Collider Physics - 27/36** 

# W + 3 jets at the Tevatron – BlackHat



BlackHat + Gleisberg (Sherpa - for real emissions)



- BlackHat and Sherpa
  It's 2010!
- Outline

Introduction

**On-Shell Methods** 

#### Black Magic? BlackHat!

Tevatron

- ullet Ws and Zs
- W + 3 Jets at the LHC
- Z + 3 Jets at the Tevatron
- Towards W + 4 Jets
   More to Come!

Summary and Outlook

# Ws and Zs

- $W(\rightarrow l\nu) + \text{ jets and } Z(\rightarrow \nu\nu) + \text{ jets significant}$ (irreducible) backgrounds in searches for new physics
- $Z \rightarrow \nu \nu$ -background can be calibrated ("data-driven") from  $Z \rightarrow l^+ l^-$ , but especially in initial LHC running needs to be supplemented by theory input (Monte Carlos,...) because of very low statistics
- $W \rightarrow l\nu$  has larger cross section, but is less clean because of intrinsic missing energy
- Underlying QCD dynamics is the same for both  $\Rightarrow$  can use Z/W to calibrate W/Z
- ATLAS and CMS estimate uncertainty up to 30-50% due to (LO) Monte Carlo input



# W + 3 Jets at the LHC

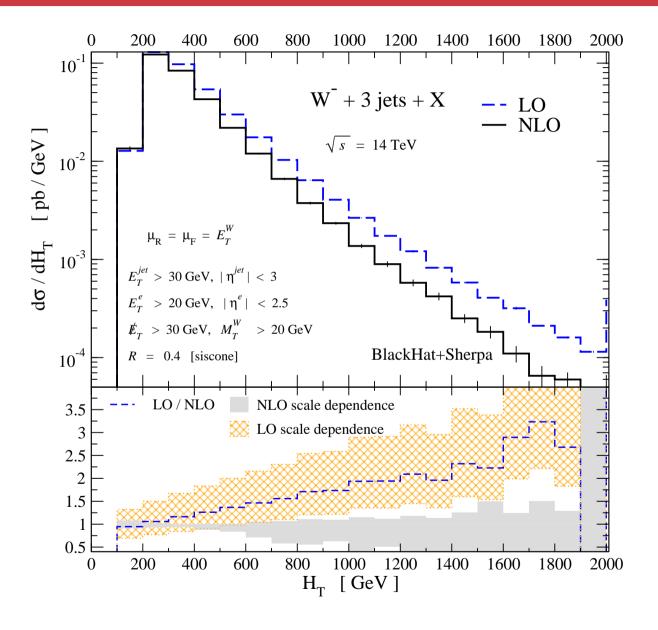
BlackHat and Sherpa
It's 2010!
Outline

Introduction

**On-Shell Methods** 

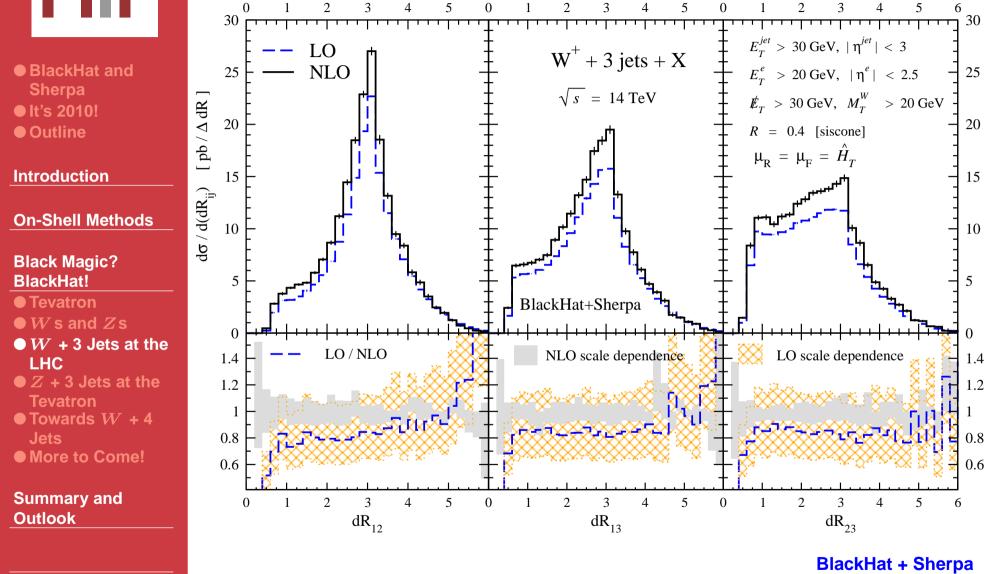


ullet Ws and Zs




 Z + 3 Jets at the Tevatron

● Towards W + 4 Jets

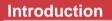

• More to Come!

Summary and Outlook



# Pliī

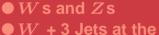
# W + 3 Jets at the LHC




**On-Shell Methods for Collider Physics - 30/36** 

# Pliī

## Z + 3 Jets at the Tevatron



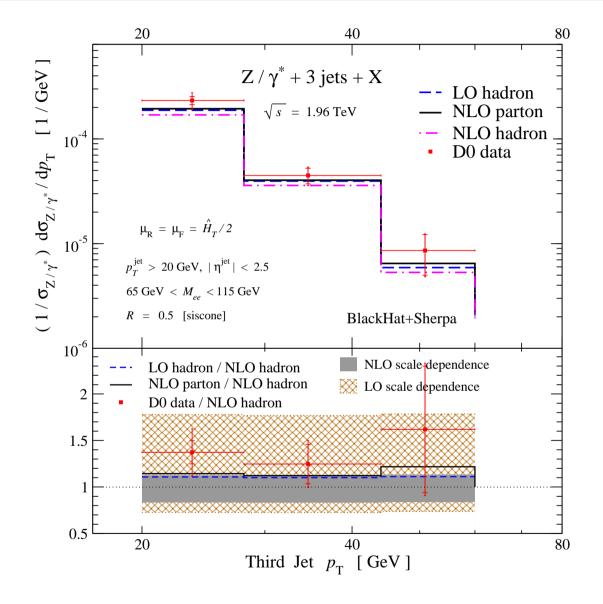







Tevatron








Towards W + 4 Jets

• More to Come!





BlackHat-Sherne



BlackHat and Sherpa
It's 2010!

Outline

Introduction

**On-Shell Methods** 

#### Black Magic? BlackHat!

Tevatron
W s and Z s
W + 3 Jets at the LHC
Z + 3 Jets at the Tevatron
Towards W + 4 Jets

• More to Come!

Summary and Outlook

#### Towards W + 4 Jets

#### Numerical stability, virtual $\frac{d\sigma_V^{BH} - d\sigma_V}{\underset{d\sigma_V}{\operatorname{target}}}\right)$ $\log$ s = 7 TeV $10^{4}$ Ο(ε<sup>`</sup>\_) O(ε<sup>-1</sup>) O(ε<sup>0</sup>) 103 Ē $g d \rightarrow e^- \overline{v} g g g u$ $10^{2}$ Ē

-2

0

2

-4

**BlackHat preliminary** 

10<sup>1</sup>

 $10^{\circ}$ 

-18

-16 -14

-12

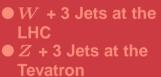
-10

-8

-6

**On-Shell Methods for Collider Physics - 32/36** 




- BlackHat and Sherpa
  It's 2010!
- Outline

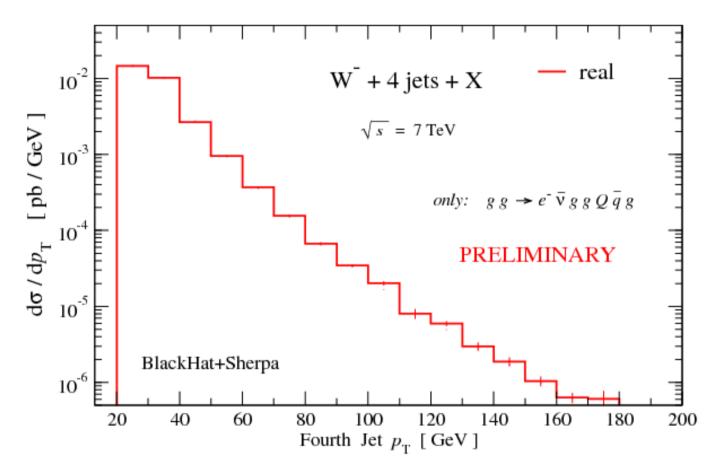
Introduction

**On-Shell Methods** 








Towards W + 4 Jets

• More to Come!

Summary and Outlook

## Towards W + 4 Jets

Real emission - W + 5 jets with trees from BlackHat



BlackHat + Sherpa preliminary



# More to Come!

BlackHat and Sherpa
It's 2010!
Outline

Introduction

**On-Shell Methods** 

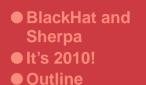
Black Magic? BlackHat!

Tevatron
W s and Z s

● W + 3 Jets at the LHC

*Z* + 3 Jets at the Tevatron
Towards W + 4

Jets


• More to Come!

Summary and Outlook





# More to Come!



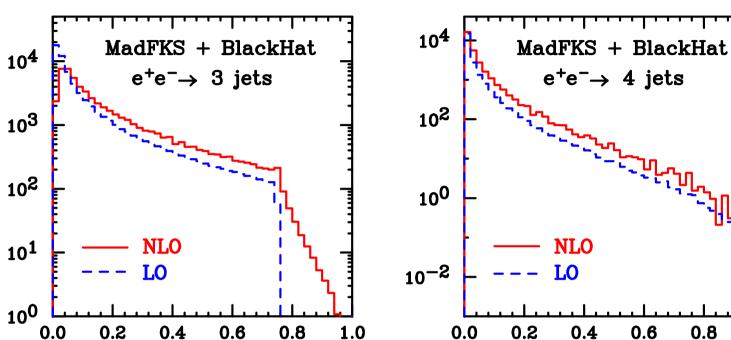




bin (pb)

per

ь




Tevatron

- ullet W s and Z s
- W + 3 Jets at the LHC
- Z + 3 Jets at the
- Tevatron
- Towards W + 4







C parameter



1.0

**D** parameter



 BlackHat and Sherpa
 It's 2010!
 Outline

Introduction

**On-Shell Methods** 

Black Magic? BlackHat!

Summary and Outlook

 Summary and Outlook

# **Summary and Outlook**

#### NLO corrections are important at the LHC

**On-Shell Methods for Collider Physics - 35/36** 



 BlackHat and Sherpa
 It's 2010!

Outline

Introduction

**On-Shell Methods** 

Black Magic? BlackHat!

Summary and Outlook

 Summary and Outlook

#### NLO corrections are important at the LHC

Bottleneck so far: 1-loop amplitudes – cannot just press a button



 BlackHat and Sherpa
 It's 2010!

Outline

Introduction

**On-Shell Methods** 

Black Magic? BlackHat!

Summary and Outlook

 Summary and Outlook

- Bottleneck so far: 1-loop amplitudes cannot just press a button
- Unitarity methods cleared bottleneck, automatization well underway



 BlackHat and Sherpa
 It's 2010!

Outline

Introduction

**On-Shell Methods** 

Black Magic? BlackHat!

Summary and Outlook

 Summary and Outlook

- Bottleneck so far: 1-loop amplitudes cannot just press a button
- Unitarity methods cleared bottleneck, automatization well underway
- Results: First complete calculation of V+ 3 jets with BlackHat, W+4 jets underway



 BlackHat and Sherpa
 It's 2010!

Outline

Introduction

**On-Shell Methods** 

Black Magic? BlackHat!

Summary and Outlook

 Summary and Outlook

- Bottleneck so far: 1-loop amplitudes cannot just press a button
- Unitarity methods cleared bottleneck, automatization well underway
- Results: First complete calculation of V+ 3 jets with BlackHat, W+4 jets underway
- Public BH release coming soon to a website near you



- BlackHat and Sherpa
   It's 2010!
- Outline

Introduction

**On-Shell Methods** 

Black Magic? BlackHat!

Summary and Outlook

 Summary and Outlook

- Bottleneck so far: 1-loop amplitudes cannot just press a button
- Unitarity methods cleared bottleneck, automatization well underway
- Results: First complete calculation of V+ 3 jets with BlackHat, W+4 jets underway
- Public BH release coming soon to a website near you
- Underlying principle: gauge theory structure much simpler than expansion in terms of Feynman diagrams ⇒ reorganization of quantum field theoretic description – see talks at this workshop



- BlackHat and Sherpa
   It's 2010!
- Outline

Introduction

**On-Shell Methods** 

Black Magic? BlackHat!

Summary and Outlook

 Summary and Outlook

- Bottleneck so far: 1-loop amplitudes cannot just press a button
- Unitarity methods cleared bottleneck, automatization well underway
- Results: First complete calculation of V+ 3 jets with BlackHat, W+4 jets underway
- Public BH release coming soon to a website near you
- Underlying principle: gauge theory structure much simpler than expansion in terms of Feynman diagrams ⇒ reorganization of quantum field theoretic description – see talks at this workshop



# It's 2010!

 BlackHat and Sherpa
 It's 2010!
 Outline

Introduction

**On-Shell Methods** 

Black Magic? BlackHat!

Summary and Outlook Summary and Outlook





#### **Backup Slides**

 BlackHat and Sherpa
 It's 2010!
 Outline

Introduction

**On-Shell Methods** 

Black Magic? BlackHat!

Summary and Outlook



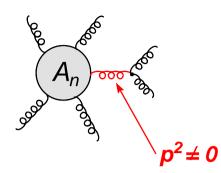
# **Black Hat University 2.0**

Get Access To A Secret Community Where Scripts Applications, Software & Tactics Are Used By "Underground" Marketers To Silently Make Fortunes On The Internet

Enter Your Name and Email Address Below and You'll be Given

FIRST Priority When We RE-LAUNCH BHU 2.0

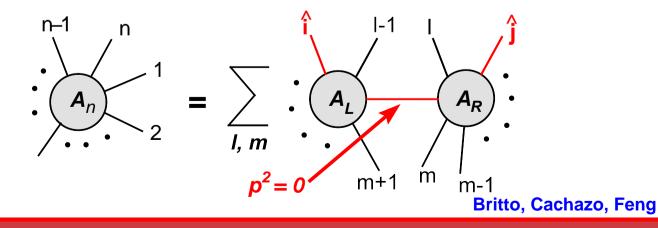
# **On-Shell Recursion Relations at Tree Level**


BlackHat and Sherpa
It's 2010!
Outline

Introduction

**On-Shell Methods** 

Black Magic? BlackHat!


Summary and Outlook



#### **Complex** continue (shift) spinors and momenta:

 $p_i 
ightarrow p_i(z) \qquad p_j 
ightarrow p_j(z) \ p_i + p_j 
ightarrow p_i + p_j$ 

Momentum conservation is maintained, momenta on-shell ( $p_i(z)^2 = p_j(z)^2 = 0$ ).





BlackHat and Sherpa
It's 2010!
Outline

Introduction

**On-Shell Methods** 

Black Magic? BlackHat!

Summary and Outlook

#### **Proof at Tree-Level**

Propagators and thus amplitudes are now functions of the complex parameter:

$$egin{aligned} 1/P_{l...j..m}^2 &
ightarrow \ 1/P_{l...j..m}^2(m{z}) \ A(m{z}) &= \sum_{l,m} \sum_h A_L^h(m{z}) rac{1}{P_{l...j..m}^2(m{z})} A_R^{-h}(m{z}) \end{aligned}$$



BlackHat and Sherpa
It's 2010!
Outline

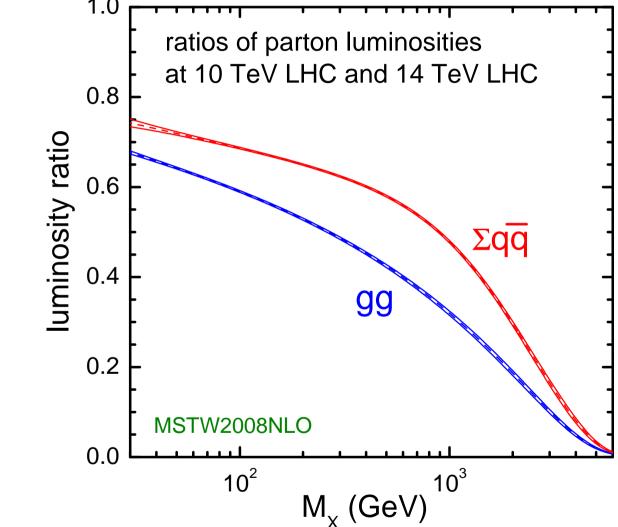
Introduction

**On-Shell Methods** 

Black Magic? BlackHat!

Summary and Outlook

#### **Proof at Tree-Level**


Propagators and thus amplitudes are now functions of the complex parameter:

$$egin{aligned} 1/P_{l...j...m}^2 &
ightarrow \ 1/P_{l...j...m}^2(oldsymbol{z}) \ A(oldsymbol{z}) &= \sum_{l,m} \sum_h A_L^h(oldsymbol{z}) rac{1}{P_{l...j...m}^2(oldsymbol{z})} A_R^{-h}(oldsymbol{z}) \end{aligned}$$

If  $A(z \to \infty) \to 0$  - Cauchy's theorem  $\frac{1}{2\pi i} \oint_C \frac{dz}{z} A(z) = 0$   $A(0) = -\sum_{\text{poles } \alpha} \operatorname{Res}_{z=z_{\alpha}} \frac{A(z)}{z}$   $= \sum_{\text{poles } \alpha} \sum_h A_L^h(z_{\alpha}) \frac{1}{P_{l...j...m}^2} A_R^{-h}(z_{\alpha})$ 

Britto, Cachazo, Feng, Witten

# From 14 TeV to 10 TeV CM Energy Reduction in luminosity approx. 1/2 1.0 ratios of parton luminosities



Sherpa

It's 2010!

Introduction

**Black Magic?** 

Summary and

**BlackHat!** 

Outlook

**On-Shell Methods** 

Outline