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1. MHV Amplitudes and Wilson Loops

At any loop order L, an MHV amplitude in N=4 SYM can be
expressed as the tree-level amplitude times a helicity-

iIndependent loop factor: AL — giree pq(D)

Atl-loop: M) = » F*(p.q. P.Q)

p.q
At 2-loops: Anastasiou-Bern-Dixon-Kosower' 03 (ABDK)
found an iterative structure relating the 2-loop to the 1-loop.

To all-orders: Bern-Dixon-Smirnov’'05 (BDS) proposed a re-
summed exponentiated expression.

(checked by BDS at 3 loops for n=4)



Alday-Maldacena’07:

At strong coupling: amplitudes are related to the Wilson
loops with the contour made out of external momenta

WIC,| = Tr'Pexp {?ﬁg fz dr 2" (1)A, (x(7))

Drummond-Korchemsky-Sokatchev'07
Brandhuber-Heslop-Travaglini’O7
Drummond-Henn-Korchemsky-Sokatchev’'07-08

found that also at weak coupling there is a relation
between planar MHV amplitudes and these light-like
polygon Wilson loops:

Wilson-Loops/Amplitudes
duality in perturbation theory



« The BDS expression in the exponent (for MHV ampls):
(BDS), Z o fP () MW (Le) + Cla)
kinematic dependence governed by the 1-loop result.

« For Wilson Loops the BDS formula takes the same form
with a substitution: 1-loop ampl. =— 1-loop Wilson loop:

2
W = MY — T
and the coefficient functions are different:
f0(e) =1 fP(e) = =G — Gye — G
o) =1 fin(€) = =G+ Tése = 5Cae?



« At 1-loop the BDS formula is exact by construction.

« At higher-loops (dual conformal invariance indicates that)
It must be correct for n=4 and n=5 points.

« Explicit calculations show that

at n=6 points and at 2 loops the BDS formula must be
modified by an addition of the remainder function which
IS the same for the amplitudes and for the Wilson loops :

M (e) - %(M,&})(e))g = [P OMP(2¢) + +@ + Ofe)

Bern-Dixon-Kosower-Roiban-Spradlin-Vergu-Volovich;
Drummond-Henn-Korchemsky-Sokatchev’'08

DHKS conformal Ward identity: BDS is one particular
solution => the Remainder must be conformally invariant




At 1-loop: the Wilson Loop and the Amplitude contributions
are the same up to a multiplicative factor:

['(1 — 2e¢)

(1 1 -9 1

'EL.-',EL) — FQ(]_ — E)M;) — (1+QQE )MEL) + O(E)
— pi = X — X

Drummond-Korchemsky-Sokatchev'07 Brandhuber-Heslop-Travaglini’'07



The relation between Amplitudes and Wilson loops
at 2 loops and beyond is (traditionally) in terms

of the Remainder fs.:
| R, = log(M,) — (BDS),
RYE = log(W,)) — (BDS),' "

R, = R'"

with no additional (n-dependent) constant shifts.
Holds for n=4,5 since: RXVL = R;NL = 0
Collinear limits for amplitudes imply that Wilson loops:
WL WL
Rn — Rn—l

We checked that this holds for n=6,7,8 (and no constant shifts allowed).



* Remainder functions are defined by subtracting BDS:
R, =log(M,) — (BDS),
R, " =log(W,) — (BDS)"*"

 BDS formulae have a 1-loop origin and are not the most
natural quantities to consider e.g. at strong coupling.

[At strong coupling, another solution of the conf anomaly equation
makes a more prominent appearance. BDS-like’ expression.]

* |n the second half of the talk instead consider a ratio of a
Wilson loop and a ‘reference’ Wilson loop.

This ratio is finite, regularisation-independent and

conformally-invariant

. W M,

(it does not refer to BDS) - = -
re re

and can be used to: W M,




2. Wilson Loops: Systematics

WiC, = TrPexp [?ﬁg % dr 2" (1)A,(z(7))
Cn

* The closed contour C, is made out of the lightlike external
momenta in the order dictated by the colour ordering of the

amplitude.

« The non-Abelian exponentiation theorem (Gatheral’83;
Frenkel-Taylor'84) allows to calculate directly the log of W:

(WIC,]) =1+ ZCLZW,,SZ) = epo@lwg)
=1 =1

L@ @ ]

— (W 1))2
T T 2 ( )

mn



Anastasiou-Brandhuber-Heslop-Khoze-Spence-Travaglini 09

At 2-loops:

* There are five main ingredients to the logarithm of the
Wilson loop calculation at two lops for any number of
edges, n.

We call them:

the ““hard diagram" T (Di, pis P Qs Qii, Qi)
the ““curtain diagram" fe(pi, pj, pr: Qik, Qi Qij)
the ““cross diagram" Ix (pi; pi; Qi Qi)

the >Y diagram", and Iy (i pj: Q> Qi)

the " factorised cross diagram”

(—=1/2)fp(pi. pj; Qji- Qi;) fe(Pr. P Quie, Qrt)

(these are Feynman diagrams arising from the use of the
non-Abelian exponentiation theorem)
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* The logarithm of the complete n-sided Wilson loop

(at 2 loops) is given by the sum over these 5 types of
diagrams:  [all symmetry factors automatically = 1]

IIFS) =C { Z [f (pt Pjs Pk C}_;.L C}hi pz_;r) +fC(f}t Pjs Pk (gjh (g.kz 'u'lj)

1<i<j<k<n

+ fo(pj. P, Pis Qi Qij. Qi) + fo(Pr. pi. pji Qij. Qjk. ”mJ]

+ Z {fX pt Pj. (231 LEJ)+fY(E) Pj; ()ﬁ sy)"‘f}’(})} i () (). )}

Cifs % ji
1<i<i<n

+ Z (—1/2) fp(pi. pj: Qi Qij) fr(pr. P Quk. ka)}

1<i<k<j<l<n

o




Comment 1:

« UV singularities in these integrals depend on whether
Q=0 or not (i.e. on whether edges are adjacent)

For example f, has a 1/g? singularity if Q,=Q,=0, Q4= 0,
a 1/e singularity if Q,=0, Q,,Q5 # 0,
and is finite if Q,Q,,Q;# 0



Comment 2:

* The cusp diagrams are those involving only two
consecutive edges:

* Are already included (they are a subset of the 5 above)

C Z (fX (p@'.:p-a'ﬂ; Qi—{—li: 0) + fy (P@:Pz’ﬂ; Q@i—{—li: 0) + fy (pi + 1, pi: 0, Q-i.—t—l-i.))
i=1



« Always compute the log of the entire Wilson loop =>
the Remainder is obtained from this by subtracting BDS.

 DHKS conformal Ward identity =>
Remainder function must be conformally invariant
= Is a function of conformal cross-ratios u
<= confirmed by our computation

* We do not impose the Gramm determinant constraint =>
n(n-5)/2 independent on-shell cross-ratios. x b

[otherwise: 3n-15 independent cross-ratios]

2 2

Uij -= —5 5

« Basis: Lijr1lit1; N
]

Liilit1541



Multi-Collinear Limits

* A nice property of R, is the decomposition in the limits
where k+1 consecutive external momenta become
collinear:

Rn — Rn—k Rk +4

A A



3. n-gon computations at 2-loops

Anastasiou-Brandhuber-Heslop-VVK-Spence-Travaglini 09
Brandhuber-Heslop-VVK-Travaglini 09, Heslop-VVK'10

* Wilson loops computed numerically for
n=4,5,6,7,8 and up to 30 - fully automated procedure
at a press of a button.
[+ Very recent Del Duca-Duhr-Smirnov analytic result for n=6.]

* Number of distinct diagrams contributing to the n-gon Wilson
loops does not increase with n. There is a fixed number of
““master integrals", which we have computed.

« Verified that the remainder function depends on kinematics
only via conformal cross ratios u.

 Studied and checked collinear and multi-collinear limits.



Hexagon Calculations

R, of the hexagon at two-loops with u;=u, u,=v and u;=w
log o (1) +

w=1 blue plot, w=10 green plot, w=100 yellow plot,
w=1000 orange plot, and w=10000 red plot.



Hexagon Calculations

« A plot of Ry at two-loops for u;=u,=u,

Rl
10

T

i



Hexagon Calculations

 The Remainder at strong-coupling was derived more
recently by Alday-Gaiotto-Maldacena’09 using
Integrabllity, and it takes a very simple form:

- 1 3 |
RO (4, 1, 1) = % — 2=0" = S(log*(u) + 2Lix(u)) + const
T

1
tii+s = 7 sec”(¢/3)



Hexagon Calculations

 Itis interesting to compare these results at weak and at
strong coupling. Modifying the strong coupling result by
Introducing 3 coefficients:

. | J v 1 i 3
R‘g‘ GM(R: u, u) = cq (_% i 3_‘?52) + Cz(g(l‘“gg(ﬂ-) + 2Lig(u))) + c3
: -

« avery close (approximate) match with the weak coupling
Remainder can be found (by fixing the coefficients).



Hexagon Calculations

Rg

1f

uz u=infinity

= ¢

X :
Ot r 2-loop result
f AGM expression
L

The constant ¢y 1s fixed by the collinear imit Ry — R5 and with a little work
can be found to be ¢35 = —com?/12. We plot the combined weak coupling result and
the AGM expression for ¢; = 0.2637% and ¢y = 0.86072.



« The modified strong-coupling result,
o T 1 . 3
REM(u, u, u) = Cl(_% + 3—@52) + C‘,g(g(l{;}gg(u) + 2Li5(u))) + ¢4
L m
and the 2-loop result for R are close,
but cannot be made identical!
RP(1,1.1) = —7*/36

Special value at ¥4 from the recent analytical 2-loop expression
Del Duca-Duhr-Smirnov’10:

20 (1 11 (1 9 9 . /1 9 567 . (1 |
Re' |-, —.— ) =3Lia | = ) log=2 — —Lis | = ) log®3 — ——Lis [ = ) log 2
6 (444) 12(3 O 9 12 3 ] 1 13 3 0

543 . 1 _ 567 . (1 _ 567 _ . 1 _ 1323
+ TLIB (—5) log 2 + ?ng (§) log 3 — Tng (—5) log 3 + T (3log 2

945 39 257 173 : 189 543 .-
+ ﬁgglog.‘% — @log“lZ — a10g43 + —10g310g32 + ?10g3310g2 — Wlogg.‘%long
63 5. 5 181 5. 189 . /1 1701, . /1 543 . 1
— —7m?log“2 — —m“log“3+ —Liy | = Liy( =) ——Liy | —=
T T et ) AT (Y A Tl G

555 1\ 9 1\* 567 1\ 567 1\ 21237?
i (=2 ) = tLia (=) =2 s (=2 ) = Dlss (—2) -
T “‘( 2) > 12(3) 16 “( ‘3) 1 ”( 2) 2880



« Why introduce different coefficients at strong coupling?

R (u,u,u) = ¢ (_g T 31 %) + ¢ ?(i (log™(u) + 2Liy(u))) + c3
n

The terms on the RHS have different origin: the first is the
free energy of an integrable system, while the second
arose from subtracting the BDS expression from the cut-

off world-sheet area.
Generally: Afree + (BDS-BDSIlike) + Aperiods + Aextra

 Hope to express the strong- and the weak-coupling
results as linear combinations of certain master functions

and then find the coefficients.

At present we lack the theory giving the basis of master
functions (at least at weak coupling).



Seven-point Calculations

14 kinematic invariants in total. 7 conformal cross ratios.
« Conformal invariance checked.
« Can compute in any kinematics.

Ro(u. w, u, u, u, u. u)

300 ¢ E.G. for all u equal:
200?
100?
of
—100;

—-200 |

300 N "
(0.001 0.01 0.1 1 10 100




Eight-point Calculations

Twenty kinematic invariants
Twelve conformal cross ratios:

Ui 543 2218 Ui 344 2214

Checked conformal invariance of R

Performed computations in various kinematic settings
e.g. for general polygons embeddable in AdSs3
and/or for regular polygons.



Octagons on the boundary of AdSs

Alday-Maldacena 09 Brandhuber-Heslop-VVK-Travaglini 09

« See the talk of Paul Heslop

0.0 Im(m)

Re(m)

Strong coupling Weak coupling 2-loop



Regular Polygons in 2+1

* 2n-gons which can be embedded into the 1+1-dim
boundary of AdS3; conformally equivalent to regular
polygons in 2+1 dims

'lﬂ-.a'j — 1 :

. t ‘2
: ( sin g )
1 l‘-ij p— — . .
1 Ta -
sin 7%

e At 2-loops we have:
R (1,1.1) = —=1/36

= odd

Brandhuber-Heslop-VVK-Travaglini’09

on 3 10 12 14 16
R || -5.528 | -8.386 | -11.262 | -14.145 | -17.035
13 20 29 2 30

-19.926 | -22.821 | -25.717 | -28.614 | -37.311




Regular Polygons in 2+1

J 10 15 20 75 30

0.346 < 0.01
fit,] — 7T ( — 0.9255n + 2.026 — ) ~

T

|
=

[

0.181  0.228 < 0.0004
(— 0.9239n + 1.9955 — )

n n?



4. The Ratio of Wilson loops

Heslop-VVK'10

« Want to work with a finite and conformally-invariant object
which can be used at strong as well as weak coupling.

« Don’t wish to subtract (any specific form of) BDS,
don’t want to use the Remainder, don’'t want to heavily
rely on any specific regularisation scheme.

 |deally want to formulate Wilson loop/Amplitude duality in
terms of something more closely related to the free-energy
contribution appearing at strong coupling in

Alday-Gaiotto-Maldacena , Alday-Maldacena-Sever-Vieira’10



At strong coupling, a — oo, the quantity of interest is
the area of a world sheet ending on the polygonal Wilson

loop, V2dA.

A is a function of two-particle invariants s and multi-
particle invariants tl>2l

si = (pi + pit1)? tz[Dz] = (pi + pit1+ ...+ Ditr_1)?

The number of independent multi-particle invariants t?[f“]
is n(n—>5)/2 and is the same as the number of indepen-
dent cross-ratios w;.

A is infinite (which is a reflection of the divergences of
the amplitude/Wilson loop) and requires regularisation.



Alday-Gaiotto-Maldacena , Alday-Maldacena-Sever-Vieira’10

At strong coupling A can be represented as

/ N\ 2,,,
flcutoﬁ('f’) — —l/ d=w
2.0, ZAdS >€c

Acutoff depends on the kinematics only through the two-
particle invariants s;

A(S, t) = Acutoﬂ’(s)_l_Afinite(S) t) )

n

1
Acutoff = 3 Z (Iog G(Q:Si)z
=1

- Z ((Iog si)” + Z( 1)*"log s; log 3z+1+2]€)
k=0

where n =4K +1 orn=4K + 3, and a similar formula
holds for even n.



Thus we consider the difference between two areas

A(s,t) — A(s,T)

with the same values of s; but different values of multi-
particle invariants.

Divergent contributions Acytoff Cancel in the difference.

More generally,

Wi, - ref — fini
log (Wﬁef> = wn(s,t) —w, (s,t) = finite

This is finite at weak coupling as well, since the diver-
gences again depend only of s;

Z L f& ><e> Z (—s@)‘“
262 :




Now use the matching between the number of indepen-
dent tz[‘"] and u;; to trade all multi-particle invariants for
the cross-ratios {s,t} — {s,u}.

[Requres that we do not impose the Gramm det constraints and
that n is not divisible by 4.]

Next note that in the decomposition

A(Sa u) — Acutoﬂ’(s) + Afinite(sa U)
the conformal anomaly equation is satisfied by Acytofr.

Thus Asinite Satisfies the homogenious equation and is a
funtion only of w

Afinite = Afinite(u)



Exactly the same reasoning applies, in general, not only
to the strong-coupling regime, but also at weak cou-
pling to all orders in perturbation theory and both for

scattering amplitudes and Wilson loops.

For Wilson |loops the relevant quantity is

Wh - — ref ~\ — fini ~
log (Wﬁef) = wp(s,u) —w, (s,u) = finite(u,u)

RHS is a function of conformal cross-ratios only.

This is ensured by the fact that w,(s,u) satisfies anoma-
lous conformal Ward identities a particular solution of
which is ‘BDS-like’ Acutoff Which crucially depends only
on two-particle invariants.



The Wilson loop/MHV amplitude duality is then

W - M, -
09 () (@) = tog (1% ) ()

n

where we treat the reference variables o« as fixed.

Finite, conformally-invariant ratio.

Finite => can remove the log with no loss of info
Wn Mn

ref ref
Wn M i

Finite => must be regularisation-independent.
e.g. the same M, /M on the Coulomb phase of N' = 4
SYM where infrared divergences are regulated by the

masses (VEVS). Asin: Alday-Henn-Plefka-Schuster'09
Henn-Naculich-Schnitzer-Spradlin®10



Multi-Collinear Limits

 k+1 consecutive external momenta become collinear:

D

~—_" c

D

F

Rn — Rn—k T Rk‘.—l—él

one needs to keep both variables, u and u active

ref

’CUR(S:, U) o wn (8? ﬂ) — wn—k(S? U) o wsfze—fk(sﬂ ﬂ)




For general non-MHV amplitudes, if we factor out the
corresponding tree level amplitude, the ratio

(ATI\LlonI\/IHV/AEonI\/IHVtree) s, u, h)

(
(AT Arettree) (s, i, h)

is not only finite but also expected to be (dual) confor-
mally invariant.

Of copurse the Wilson loop dual of this non-MHYV ratio
is not known outside of the strong coupling regime.



5. Continuous family of n-gons

Alday-Maldacena-Sever-Vieira’ 10 Heslop-VVK'10

For polygons in 4-dimensions, there is a one-parameter
family of Z,-regular polygons for any even n.

The family depends continuously on the parameter ¢.
Varying ¢ one covers a particular slice of the u;;-space.

For general n-gons, ¢-family starts at a special regular
polygon in (1 4+ 2) dimensions at ¢ =0

as one increases ¢, it passes through another special
polygon in (1 + 1) dimensions at ¢ = w(n — 4)/2 before
reaching the “extreme” point where (some of) the wu-
variables become infinite.



At strong coupling, the ratio of Wilson loops for all ¢-
families is simply equal to the free-energy term:

2
Afree = ——sz -+ const

nit

We computed weak-coupling expressions for the Wilson
loop ratio. For the reference Wilson loop we took the
special polygon in 14+1 dimensions

0 (Wn(@) et = (n—a)m)2

at 1-loop (nonvanishing!) and 2-loops

for hexagons, octagons and decagons.



Hexagon phi-family

For the regular hexagon the cross-ratios are
1 5 _

Uji+3 — Zsec (¢/3) L = 17273
where ¢ varies between 0 and 37 /2.

T he Wilson loop ratio has a non-trivial contribution al-
ready at one loop

(1)
3
W) — e = 0 {é 1002(u) + 2Lin(1 — ) }

Two-loop computation is carried out numerically.



Hexagon phi-family

[ > .
I et L A

b -~

Awes at one loop (dotted), two loops (dashed) and at strong cou-
pling (solid line). The two special regular polygons are at ¢ = 0
and at ¢ = w, the latter being chosen as the reference point.



Octagon phi-family

For the regular octagon the cross-ratios are

1
(17 —_ 221,,8
T 1+ V2 cos(4/4)
1
Uis+-4 — — izl,...,4
T

where ¢ varies between 0 and 3.

The Wilson loop ratio at one loop Is

A’wél) = _,),}{1) (Liz(l u14) + l0g ( 5 ) Iog(u14))



Octagon phi-family

Awg at one loop (dotted), two loops (dashed) and at strong cou-
pling (solid line). The two special regular polygons are at ¢ = 0O
and at ¢ = 2w, the latter being chosen as the reference point.



Decagon phi-family

Aw10 at one loop (dotted), two loops (dashed) and at strong
coupling (solid line). The two special regular polygons are at ¢ =0
and at ¢ = 3w, the latter being chosen as the reference point.



Conclusions

« Wilson loops at 2-loop level are under control.
 |f the duality with amplitudes continues to hold
- numerical control over planar n-point 2-loop MHV amplitudes.

*  Wilson loop/Amplitudes duality can be formulated via R, = RE/L

or in terms of the ratios: _''n _ My Then:
W/ et Meret

1. All loops are involved including 1-loop
2. No dependence survives beyond gamma-cusp in subleading terms

L L L
FOe) = £+ e+ B

3. Any regularisation applies and the logarithm looses no information.

« Similarities between weak-coupling and strong-coupling results.
[Apply integrable methods at weak coupling??]



