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Black Holes emit in two ways 

Superradiance
Black holes expel angular momenta/ charge increasing their 
own entropy. Presumably end point a condensate outside 
black hole.

End point: Hairy Black Holes
Einstein-Maxwell has charged condensate [Gubser]

AdS5 Black holes with R-charge [Bhattacharya, Minwalla, 
Papadodimas]

Enigmatic Black Holes in 4d N=2 SUGRA [Denef+Moore]

Look for similar phenomenon (horizon entropy 
increase by emission) in D1-D5 system in bulk 
and boundary

Black holes evaporate away increasing total entropy but 
decreasing their own

Hawking Radiation



Plan

Results

D1-D5 CFT new phase

Bulk enigmatic phase in the D1-D5 system 
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(b) Bulk phase diagram

Figure 2: The updated, correct phase diagram of the D1-D5 system for the CFT and bulk
(schematic, not to scale). The parameter range corresponds to the red rectangle in Fig. 1. The
abbreviation “c.s. bound” refers to the cosmic censorship bound Np = J2

L/4N . For further
explanations, see the text.

sector) also exists all the way down to the cosmic censorship bound and that its entropy is

always equal to (1.2) in the large N limit. Based on this, the phase diagram of the D1-D5

system has been thought to be the one shown in Fig. 1; above the cosmic censorship bound,

the system is in the BMPV black hole phase while, below the bound, the system is in the

phase of a gas of supergravity particles.

However, in the parameter region outside (1.1), namely in the non-Cardy regime, the

Cardy formula (1.2) is no longer valid and there is no guarantee that the BMPV black hole

phase is thermodynamically dominant. We will analyze in detail the possible phases both in

the CFT and in the bulk, both analytically and numerically, and find new phases that for the

same charges are thermodynamically dominant over other known phases in the non-Cardy

regime. In the bulk, the new phase corresponds to a black hole surrounded by a supertube,

or to a black ring. We can interpret both bulk solutions as resulting from the moulting or

hair-shedding of the BMPV black hole. In one configuration the hair is a supertube, and in

the other one the hair is a Gibbons-Hawking or Taub-NUT center (corresponding to a D6

brane in four dimensions) whose shedding changes the topology of the black hole horizon and

transforms it into a black ring. As a result, the phase diagram shown in Fig. 1 is significantly

modified in the non-Cardy regime.

The CFT phase diagram is shown in Fig. 2a. If we start in the BMPV phase (light blue)

with some large value of Np and decrease Np, then at Np = JL/2 (red dotted line) a new phase

(light red region) becomes available before we reach the cosmic censorship bound (thick blue

dashed curve). As soon as it becomes available, this new phase entropically dominates over

the BMPV phase. As we further decrease Np, the BMPV phase disappears at the cosmic

censorship bound Np = J2
L/4N (blue dashed line) while the new phase continues to exist and

3

BMPV
new
phase

c.s. bound unitarity bound

BMPV

black
ring

BMPV+tube

new phase subdominant

(a) CFT phase diagram in the RR sector
at the orbifold point

(b) Bulk phase diagram

Figure 2: The updated, correct phase diagram of the D1-D5 system for the CFT and bulk
(schematic, not to scale). The parameter range corresponds to the red rectangle in Fig. 1. The
abbreviation “c.s. bound” refers to the cosmic censorship bound Np = J2

L/4N . For further
explanations, see the text.

sector) also exists all the way down to the cosmic censorship bound and that its entropy is

always equal to (1.2) in the large N limit. Based on this, the phase diagram of the D1-D5

system has been thought to be the one shown in Fig. 1; above the cosmic censorship bound,

the system is in the BMPV black hole phase while, below the bound, the system is in the

phase of a gas of supergravity particles.

However, in the parameter region outside (1.1), namely in the non-Cardy regime, the

Cardy formula (1.2) is no longer valid and there is no guarantee that the BMPV black hole

phase is thermodynamically dominant. We will analyze in detail the possible phases both in

the CFT and in the bulk, both analytically and numerically, and find new phases that for the

same charges are thermodynamically dominant over other known phases in the non-Cardy

regime. In the bulk, the new phase corresponds to a black hole surrounded by a supertube,

or to a black ring. We can interpret both bulk solutions as resulting from the moulting or

hair-shedding of the BMPV black hole. In one configuration the hair is a supertube, and in

the other one the hair is a Gibbons-Hawking or Taub-NUT center (corresponding to a D6

brane in four dimensions) whose shedding changes the topology of the black hole horizon and

transforms it into a black ring. As a result, the phase diagram shown in Fig. 1 is significantly

modified in the non-Cardy regime.

The CFT phase diagram is shown in Fig. 2a. If we start in the BMPV phase (light blue)

with some large value of Np and decrease Np, then at Np = JL/2 (red dotted line) a new phase

(light red region) becomes available before we reach the cosmic censorship bound (thick blue

dashed curve). As soon as it becomes available, this new phase entropically dominates over

the BMPV phase. As we further decrease Np, the BMPV phase disappears at the cosmic

censorship bound Np = J2
L/4N (blue dashed line) while the new phase continues to exist and

3

ask what is the entropy of the system for given values of Np > 0 and JL (JR is left unfixed).

In the Cardy regime

Np − J2
L/4N " N, (1.1)

where c = 6N is the central charge of CFT, the Cardy formula (and the spectral flow sym-

metry) on the CFT side tells us that the entropy is given by

SCardy = 2π
√

NNp − J2
L/4. (1.2)

Correspondingly, in the bulk, there is the BMPV black hole [9], which is a single-center BPS

black hole and nicely reproduces the Cardy entropy (1.2). Although the Cardy formula is

valid only in the region (1.1), the bulk BMPV black hole exists for any value of Np larger than

the bound Np = J2
L/4N , which is sometimes called the “cosmic censorship bound”. Actually,

one can identify the CFT phase (the “long string sector”) dual to the bulk BMPV black hole

and show that this CFT phase exists all the way down to the cosmic censorship bound and

its entropy is equal to (1.2) in the large N limit. Based on these, the phase diagram of the

D1-D5 system has been thought to be as shown in Figure 1. Above the cosmic censorship








Figure 1: The conventional phase diagram of the D1-D5 system. Above the blue dotted
parabola Np = J2

L/4N (cosmic censorship bound) is the BMPV black hole phase (light blue),
while below the parabola is the phase of a gas of sugra particles (gray). The range of Np, JL

is bounded from below by the unitarity bound (green solid polygon).

bound the system is in the BMPV black hole phase, while below the bound the system is in

the phase of a gas of supergravity (sugra) particles.

However, in the parameter region outside (1.1), namely in the non-Cardy regime, the Cardy

formula (1.2) is no longer valid and there is no guarantee that the BMPV black hole phase is

the thermodynamically dominant phase. We will do detailed analyses of possible phases both

in the CFT and the bulk, some analytic and some numerical, and find new phases that are

thermodynamically dominant over other known phases in the non-Cardy regime. In the bulk,

the new phase is a black hole/ring state. As a result, the phase diagram shown in Figure 1 is

significantly modified in the non-Cardy regime.
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CFT:

dominates over BMPV close to cosmic censorship 
bound
exists outside cosmic censorship bound and 
dominates over SUGRA gas 

found a new phase outside Cardy regime

Our results make the old phase diagram 
obsolete

Gravity: 
Phase exists in the above region and enigmatic 
in part of the above region viz. BMPV
+supertube/ Black Ring 

Phase not captured by elliptic genus, SCFT > SGravity > 0
Even at SUGRA point only some unprotected states 
lifted!!!



D1-D5 System
Consider type II B on S1 x M4 (M4=T4 or K3)

N1 D1 branes on S1

N5 D5 branes on S1 x M4

Np units of momentum along S1

JL, JR units of angular momenta

take S1 >> M4: R1,4 x S1 black string, near horizon AdS3 x S3

Higgs branch of D1-D5 flows in the IR to 1+1 d N=(4,4) SCFT with 
target space a resolution of (M4)N/SN

Lots of evidence for so called ‘orbifold point’ in the moduli space where 
target space is (M4)N/SN: symmetrized copies of the CFT 



D1-D5 CFT at the Orbifold Point
at the orbifold point the target space is (M4)N/SN

orbifolding produces R-charged twist sectors for copies of CFT

O(1)(σ+6π) = O(2)(σ+4π)= O(3)(σ+2π) =O(1)(σ)

Figure 4.2: A pictorial representation of the CFT and its excitations.

The other copies of XAȦ
m remain unchanged. There is a similar action on fermionic fields.

This twisting is schematically depicted in the figure 4.3.
The connection between various quantities on the gravity side and on the CFT side is

needed for the analysis below. The charge radii Q1 and Q5 are related with the number of
D1 and D5 branes as

Q1 =
gα′3

V
n1, Q5 = gα′n5 , (4.2.8)

while the five dimensional Newton’s constant is

16πG(5) =
(2π)7g2α′4

(2π)4V (2πR)
=

(2π)2g2α′4

RV
. (4.2.9)

(a) Untwisted component strings

σ3−−−→

(b) The twisted component string

Figure 4.3: The twist operator σ3. Each loop represents a ‘copy’ of the CFT wrapping the
S1. The twist operator joins these copies into one single copy of the CFT living on a circle
of three times the length of the original circle.

The mass above extremality (M), the momentum charge radius along the S1 (QP )
and the angular momenta (Jψ, Jφ) are related to the left and right dimensions (h, h̄) and
R-charges (j, j̄) through the relations

MR =
(

h− n1n5

4

)

+
(

h̄− n1n5

4

)

,

π

4G(5)
QpR =

(

h− n1n5

4

)

−
(

h̄− n1n5

4

)

,

Jψ = −j − j̄ , Jφ = −j + j̄ . (4.2.10)

We subtracted n1n5
4 from the dimensions since this is the dimension of the Ramond sector

ground states.

Vertex Operator

We are considering the emission of a minimal scalar with angular quantum numbers
(l,mψ,mφ). The dimension and charge of the operator dual to this are

h =
l

2
+ 1 , k =

mψ +mφ

2
,

h̄ =
l

2
+ 1 , k̄ =

mψ −mφ

2
. (4.2.11)
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symmetry group of S3 (SO(4) ≈ SU(2)L x SU(2)R) gives R-charge

(a) A ground state (b) A state with left excitations

(c) A state with right excitations (d) A state with left and right excitations

Figure 3: Various states in the Ramond sector of the D1-D5 CFT.

viz. σα̇A
n . A general Ramond sector ground state is made up of these bosonic and fermionic

twist fields with the total twist
∑

n = N

|gr, gr〉 =
∏

n,α,α̇,A,Ȧ

(σαα̇
n )Nn,αα̇(σAȦ

n )Nn,AȦ(σαA
n )Nn,αA(σα̇A

n )Nn,α̇A,

∑

n,α,α̇,A,Ȧ

n(Nn,αα̇ + Nn,AȦ + Nn,αA + Nn,α̇A) = N,

Nn,αα̇ = Nn,AȦ = 0, 1, 2, . . . , Nn,αA = Nn,α̇A = 0, 1. (2.1)

A general Ramond sector state is made of left and right moving excitations on the Ramond

ground states

|ex, gr〉, |gr, ex〉, |ex, ex〉 (2.2)

where ‘ex’ means acting on Ramond ground states ‘gr’ by the bosonic and fermionic modes. In

Figure 3 we digramatically represent a Ramond ground state, the same with left excitations,

right excitations and both. The arrows represent different R-charges of elementary twists.

The states of the CFT are characterized by their left and right dimension (L0 and L̄0) and

R-charges (JL and JR). JL,R are the 3rd components of the SU(2)L,R generators "JL,R and,

in our convention, JL,R are integers. The Ramond sector ground states all have the same

dimension L0 = L̄0 = N
4 . An excited state has dimension greater than that of the ground

state and any additional dimension is related to the left and right moving momentum along

the branes by

Np = L0 −
N

4
, N̄p = L̄0 −

N

4
(2.3)

The relation between the momentum and dimension is not so straightforward in the NS sector

as different twist sectors have different dimensions.

The CFT also has an outer automorphism called ‘spectral flow’ []. Spectral flow by odd

units maps states from NS to R sector and vice versa whereas spectral flow by even units

6

excitations and twists can have R-charge
excitations have Np



D1-D5: BMPV and new phase
BMPV U(1)L x SU(2)R

maps states to states in the same sector. Under spectral flow by α units we have

L′
0 = L0 +

1

2
αJL +

1

4
α2N, J ′

L = JL + αN. (2.4)

2.2 The enigmatic phase

In this subsection, we will first describe two phases in CFT at the orbifold point which are

dual to the BMPV black hole and the so-called Maldacena-Maoz [28,27]5 smooth solutions in

the bulk. We will then explicitely construct the new phase, which we will call the enigmatic

phase, in CFT by combining properties of BMPV and Maldacena-Maoz. This will become

clear as we proceed. We will then put this on a more rigorous footing by identifying the

enigmatic phase in the BPS partition function of the CFT. We will also show that the elliptic

genus fails to capture the enigmatic phase.

Our construction will be at the orbifold point from the CFT side. Since the elliptic genus

fails to capture the enigmatic phase, it is logically possible that this phase gets lifted once we

move away from the orbifold point of the CFT moduli space by turning on deformation and

go to the supergravity point. We will explore the possibility of an enigmatic phase on the

gravity side in the next section.

2.2.1 BMPV

The BMPV black hole [9] has U(1)L × SU(2)R symmetry and has an entropy

SBMPV = 2π
√

NNp − J2
L/4. (2.5)

Black holes have entropy and thus their CFT duals are ensembles of states. The dual to

BMPV black holes consists of an ensemble of thermal excitations on the left moving sector

on a long string

(exL)σ++
N . (2.6)

The SU(2)L charge is carried by left moving fermions. This phase is shown in a diagramatic

way in Figure 4(a). The subleading corrections to the above picture consists of O(1) winding

being in short strings.

When the charges are large so that we are in the Cardy regime Np − J2
L/4N # N , the

Cardy formula (and the spectral flow symmetry) says that the CFT entropy is given by (2.5).

In the Cardy regime, we have a nice picture matching on the CFT and bulk sides.

2.2.2 Maldacena-Maoz

In [27, 28] completely smooth solutions with U(1)L × U(1)R symmetry were found. Since

these solutions are compltely smooth with no horizons they have no entropy and their CFT

5Although Balasubramanian, de Boer, Keski-Vakkuri, and Ross codiscovered it can we call it MM?
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1

all excitations on one long string gives this entropy

New Phase U(1)L x U(1)R
take l units of winding out

dual effect: decreases N (so also entropy), decreases JL (increasing entropy)

maximizing S

(a) BMPV (b) Maximally Spinning (c) Enigmatic Phase

Figure 4: Three phases at the orbifold point of the D1-D5 CFT.

2.2.2 The maximally-spinning state

Refs. [34,35] found a family of smooth solutions with U(1)L ×U(1)R symmetry that have no

horizon and thus no entropy. Their CFT dual states can be uniquely determined: they have

all the winding in single twists and their R-charges are in the largest multiplet:

(σ++
1 )N . (2.7)

The phase is shown diagrammatically in Fig. 4(b).

This state has the largest possible value of JL among the ground states, namely JL = N .

Among other possible ground states with JL = N are

(σ++
1 )N−j(σ−+

1 )j , j = 0, 1, . . . , N. (2.8)

These form an SU(2)R multiplet with | "JR| = N .

2.2.3 The enigmatic phase

In the above, we discussed the BMPV phase which dominates at large momenta and the

maximally-spinning state which has no momentum but very large angular momentum. Now

let us consider combining these two, namely an ensemble of states where there is one long

string and a condensate of short strings, and ask what is the entropy maximizing ensemble

with given Np, JL (we assume JL > 0 without loss of generality).

All the excitations are carried by the long string (fractionation ensures this is dominant

[36]). Let l be the number of short strings. Thus the long string has winding N − l. The

short strings are aligned with the left-moving angular momentum of the long strings so have

JL = l, and symmetrization ensure that the short strings form an SU(2)R multiplet with

| "JR| = l just as in (2.8). Thus this phase has R-symmetry broken down to U(1)L × U(1)R.

This phase is shown in Fig. 4(c).

The entropy of this “enigmatic” phase comes from the long string sector which is the same

as that in the BMPV phase albeit with different winding number and angular momentum

Senigma,l = 2π

√

(N − l)Np −
1

4
(JL − l)2. (2.9)

9

(a) BMPV (b) Maximally Spinning (c) Enigmatic Phase

Figure 4: Three phases at the orbifold point of the D1-D5 CFT.

2.2.2 The maximally-spinning state

Refs. [34,35] found a family of smooth solutions with U(1)L ×U(1)R symmetry that have no

horizon and thus no entropy. Their CFT dual states can be uniquely determined: they have

all the winding in single twists and their R-charges are in the largest multiplet:

(σ++
1 )N . (2.7)

The phase is shown diagrammatically in Fig. 4(b).

This state has the largest possible value of JL among the ground states, namely JL = N .

Among other possible ground states with JL = N are

(σ++
1 )N−j(σ−+

1 )j , j = 0, 1, . . . , N. (2.8)

These form an SU(2)R multiplet with | "JR| = N .

2.2.3 The enigmatic phase

In the above, we discussed the BMPV phase which dominates at large momenta and the

maximally-spinning state which has no momentum but very large angular momentum. Now

let us consider combining these two, namely an ensemble of states where there is one long

string and a condensate of short strings, and ask what is the entropy maximizing ensemble

with given Np, JL (we assume JL > 0 without loss of generality).

All the excitations are carried by the long string (fractionation ensures this is dominant

[36]). Let l be the number of short strings. Thus the long string has winding N − l. The

short strings are aligned with the left-moving angular momentum of the long strings so have

JL = l, and symmetrization ensure that the short strings form an SU(2)R multiplet with

| "JR| = l just as in (2.8). Thus this phase has R-symmetry broken down to U(1)L × U(1)R.

This phase is shown in Fig. 4(c).

The entropy of this “enigmatic” phase comes from the long string sector which is the same

as that in the BMPV phase albeit with different winding number and angular momentum

Senigma,l = 2π

√

(N − l)Np −
1

4
(JL − l)2. (2.9)

9

(a) BMPV (b) Maldacena-Maoz (c) Enigmatic Phase

Figure 4: Three phases at the orbifold point of the D1-D5 CFT.

duals are uniquely determined. These states have all the winding in single twists and their

R-charges are in the largest multiplet.

(σ++
1 )N . (2.7)

The phase is shown diagramatically in Figure 4(b).

This state has the largest possible value of JL among the ground states, namely JL = N .

Among other possible ground states with JL = N are

(σ++
1 )N−j(σ−+

1 )j , j = 0, 1, . . . , N. (2.8)

These form an SU(2)R multiplet with | "JR| = N .

2.2.3 The enigmatic phase

In the above, we discussed the BMPV phase which dominates when the charges are large and

the Maldacena-Maoz state which has small charges. Now let us consider combining these two,

namely an ensemble of states where there is one long string and a condensate of short strings,

and ask what is the entropy maximizing ensemble with given Np, JL (we assume JL > 0

without loss of generality).

All the excitations are carried by the long string (fractionation ensures this is dominant []).

Let l be the number of short strings. Thus the long string has winding N − l. The short

strings are aligned with the left-moving angular momentum of the long strings so have JL = l,

and symmetrization ensure that the short strings form an SU(2)R multiplet with | "JR| = l

just as in (2.8). Thus this phase has R-symmetry broken down to U(1)L ×U(1)R. This phase

is shown in Figure 4(c).

The entropy of this “enigmatic” phase comes from the long string sector which is the same

as that in the BMPV phase albeit with different winding number and angular momentum

Senigma,l = 2π

√

(N − l)Np −
1

4
(JL − l)2. (2.9)

Maximizing this entropy with respect to l, the winding in the short strings, we get the optimal

number of short strings to be

l = JL − 2Np (2.10)
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and the entropy for this is

Senigma = 2π
√

Np(Np + N − JL). (2.11)

The enigmatic phase exists in the region where the square of the entropy is positive and the

number of short strings is greater than zero, namely

Np > 0, Np + N − JL > 0, JL − 2Np > 0. (2.12)

This means that Np ∼ JL ∼ N and therefore this phase exists outside the Cardy regime. In

addition the new phase is charged under SU(2)R with

| "JR| = JL − 2Np. (2.13)

The Np-JL diagram showing the BMPV and the enigmatic phase are plotted in Figure 5.

It is straightforward to see that

S2
enigma − S2

BMPV =

(
JL

2
− Np

)2

≥ 0 (2.14)

and thus the enigmatic phase is dominant over the BMPV and smoothly merges into it at

the upper boundary of the “wedge” in Figure 5. We emphasize that in the region where the

enigmatic phase and BMPV coexist the former dominates in entropy.

 

Figure 5: Phase diagram of D1-D5 CFT at the orbifold point.
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Such configurations are obtained from the original configuration by spectral flow (2.4) by 2η

units. Using (2.3) to rewrite the enigmatic phase in terms of the dimension rather than the

momentum:

S = 2π

√

(

L0 −
N

4

)(

L0 − JL +
3N

4

)

(2.17)

one obtains the entropy of these spectral-flowed states:

S = 2π

√

[

L0 − ηJL +
(

η2 − 1

4

)

N
][

L0 − (η + 1)JL +
(

(η + 1)2 − 1

4

)

N
]

, (2.18)

which is just a spectral-flowed version of the entropy formula by −2η units. This expression

is valid in both NS and R sectors. We can then express this result in the Ramond sector in

terms of the momentum using (2.3)

S = 2π
√

[Np − ηJL + η2N ][Np − (η + 1)JL + (η + 1)2N ]. (2.19)

As a simple example of this formula we see that we get the expression for the mirror image

wedge (JL → −JL) by taking η = −1. The region in which the spectral-flowed new phase

exists is found by mapping the boundaries of the non-spectral-flowed new phase (2.12):

Np− ηJL+ η
2N > 0, Np− (η+1)JL+(η+1)2N > 0, JL(1+2η)−2Np−2η(1+ η)N > 0.

(2.20)

In Fig. 6 we show four such enigmatic phases for η = −2,−1, 0, 1.
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Finding solutions in bulk

From CFT we find one SU(2) multiplet for JR so we look for two center 
solutions in bulk

From previous examples of entropy enigma and intuition we anticipate 
max. entropy if one center smooth

Dualize to type II A frame and look for multi-center solutions in the STU 
truncation (cannot capture all moduli)

Using spectral flow and symmetries of problem all such two centers can 
be mapped to BMPV + supertube

One might naively imagine, based on the intuition that black holes are thermodynamic en-

sembles, that such a partition is always entropically disfavorable as combining two ensembles

generally increases the total entropy:

S1-center(Γ1 + Γ2)
?
> S2-center = S(Γ1) + S(Γ2). (3.27)

It is clear, however, from examples such as the entropy enigma of [9] that such intuition is

misguided and there are examples when a two-center configuration has larger entropy than a

single-center configuration. Because of this, and because of the non-vanishing constant value

of JR observed in the CFT, we restrict ourselves to two-center configurations and look for the

ones with the most entropy.

To find them, one would need to do a stability analysis based on maximizing the total

entropy of a partition into two charges:

S2-center = S(Γ− Γ2) + S(Γ2), (3.28)

If the configuration is stable (locally entropy-maximizing), the Hessian of S2-center with respect

to Γ2 should have only negative eigenvalues. If there are some positive eigenvalues, the

configuration is entropically unstable against shedding charge from one center to the other.

Although the analysis of the Hessian for the general partition Γ2 is technically rather

difficult, there is one situation where one might expect stability: when one center is smooth

and carries no macroscopic or microscopic entropy – such a center can no longer shed charge

to the other center without producing closed timelike curves. Such smooth centers, first

discussed in [25, 26], correspond in four dimensions to D6 branes with Abelian worldvolume

fluxes [48], and have also appeared in the N = 2 entropy enigma [10]. In Appendix C we

will demonstrate local entropic stability for two-center configurations where all the entropy is

carried by one center.

While other two center configurations might be entropically stable, they are probably non-

generic and thus will impose many additional charge constraints. Although we cannot entirely

rule out stable configurations with two horizons, motivated by the entropy enigma of [10] and

the fact that configurations with a smooth center live on the boundary of charge space and

are isolated (in the sense of not being continuously connected to other charge configurations),

we will restrict our analysis to configurations with one smooth center.

Requiring S(Γ2) = 0 and smoothness18 at r2 fixes the charge Γ2 to satisfy [25, 26, 45]

lI = −CIJKkJkK

2n
, m =

k1k2k3

n2
(3.29)

from which it follows [48] that center “2” carries no microscopic entropy as it is gauge-

equivalent (by choosing the appropriate gI in eqn. (3.14)) to n D6-branes in IIA or to a Zn

quotient singularity in M-theory.

18If there is a singularity at r = r2 this is usually associated with a microscopic horizon and subleading
entropy so we can re-apply the entropy maximization argument above including subleading corrections.
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We then maximize entropy with respect to moving charges between the 
two centers
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Figure 5: E↵ects of relative orientation of angular momenta on the probe potential. The background has

charges (Q1, Q2, Q3) = (20, 20, 0.1). The tube has charges (q1, q2) = (1.5, 1.5). On the left, J
�

= 0; tube

and background rotate in the same plane. This plot shows that increasing J
 

lowers the energy of the

minimum. For su�ciently large J
 

there are stable bound states. On the right J
 

= 0; the supertube and

black hole rotate in orthogonal planes. Again the potential, and the value of the mininum, go down with

increasing J
�

.

(a) Projection on x1, x2 plane (b) Projection on x3, x4 plane

Figure 6: We visualize a black hole with rotation in the x1, x2 plane and a supertube rotating in the x3, x4

plane. On the left, we project on the plane of rotation of the black hole; the supertube is a point on the

vertical axis which represents the orthogonal plane. On the right, we project on the plane of rotation of

the supertube. In both figures the black hole is a pointlike obect in the origin.

This might come as as suprise, as one would expect that, since the tube and black hole

rotate in orthogonal planes, the sign of J� would not matter. The reason of the seeming

inconsistency is that J� ! �J� is not a symmetry of the Cvetic-Youm background. Rather,

one should consider the discrete transformation (J�, Q3

) ! (�J�,�Q
3

) (see section B.4),

which leaves the supertube Hamiltonian invariant. In this sense, we can restrict to J� > 0

and attribute the origin of the bound states to a combined e↵ect in Q
3

and J�. We come

back to this below.

3.4 E↵ects of electric charges

Here we study the e↵ect of varying the electric charges on the existence and stability of

bound states. Since the tube only has electric charges q
1

, q
2

along the first two tori we

– 12 –
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Spectral flow the max. entropy configuration back to original frame



Figure 13: The bulk phase diagram. In the light blue region, the single-center BMPV black
hole is dominant. In the pink and yellow regions the new phase dominates, either as a BMPV
black hole surrounded by a supertube for JL < N (pink), or as a black ring for JL > N
(yellow). Below the thin dashed black line and above the dotted red curve, the BMPV phase
and the new phase coexist but the BMPV phase is dominant. In the narrow region between
the dotted red curve and dashed blue curve, the two phases coexist and the new phase is
dominant.

BMPV phase in a much smaller region. Below the cosmic censorship bound where the BMPV

phase ceases to exist, the new phases are dominant both in the CFT as well as in supergravity.

In the CFT we found that the angular momenta of the phase that dominates the entropy

satisfy the relation JR = JL − 2Np (eqn. (2.13)). We then looked for bulk configurations that

satisfy the same relation (eqn. (3.39)) and obtained the phase diagram shown in Fig. 13.

If one relaxes this constraint, and looks instead for bulk configurations that dominate the

entropy for fixed charges and JL, one can find bulk two-center configurations (BMPV+tube

and pure black ring) that have JR < JL − 2Np and have slightly larger entropy than the ones

having JR = JL − 2Np. However, the difference in entropy is small and the phase diagram is

virtually unchanged from Fig. 13.21 To avoid this unnecessary complication, we imposed the

constraint JR = JL − 2Np in the bulk.

Thus we have found that near the boundary of the region where single-center black holes

exist (the cosmic censorship bound) there appear new phases with more entropy than the

single-center black hole, which can be thought of as the result of shedding of hair, or moulting,

of the single center black hole. Moreover, we have seen that in different regimes of parameter

21A peculiar thing however is that, sufficiently inside the BMPV parabola (sufficiently away from the cosmic
censorship bound), the most entropic two-center configuration has JR = 0 and r12 = 0. This is a collapsing
limit of the two-center solution and is singular. The entropy in this limit is smaller than that of the single-
center BMPV black hole, and therefore such a configuration is never realized thermodynamically. So, this
does not affect the phase diagram at all.
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Result

Enigmatic phase exists but region of dominance shrinks

BR solution obtained from spectral flow of BMPV+tube
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(a) CFT phase diagram in the RR sector
at the orbifold point

(b) Bulk phase diagram

Figure 2: The updated, correct phase diagram of the D1-D5 system for the CFT and bulk
(schematic, not to scale). The parameter range corresponds to the red rectangle in Fig. 1. The
abbreviation “c.s. bound” refers to the cosmic censorship bound Np = J2

L/4N . For further
explanations, see the text.

sector) also exists all the way down to the cosmic censorship bound and that its entropy is

always equal to (1.2) in the large N limit. Based on this, the phase diagram of the D1-D5

system has been thought to be the one shown in Fig. 1; above the cosmic censorship bound,

the system is in the BMPV black hole phase while, below the bound, the system is in the

phase of a gas of supergravity particles.

However, in the parameter region outside (1.1), namely in the non-Cardy regime, the

Cardy formula (1.2) is no longer valid and there is no guarantee that the BMPV black hole

phase is thermodynamically dominant. We will analyze in detail the possible phases both in

the CFT and in the bulk, both analytically and numerically, and find new phases that for the

same charges are thermodynamically dominant over other known phases in the non-Cardy

regime. In the bulk, the new phase corresponds to a black hole surrounded by a supertube,

or to a black ring. We can interpret both bulk solutions as resulting from the moulting or

hair-shedding of the BMPV black hole. In one configuration the hair is a supertube, and in

the other one the hair is a Gibbons-Hawking or Taub-NUT center (corresponding to a D6

brane in four dimensions) whose shedding changes the topology of the black hole horizon and

transforms it into a black ring. As a result, the phase diagram shown in Fig. 1 is significantly

modified in the non-Cardy regime.

The CFT phase diagram is shown in Fig. 2a. If we start in the BMPV phase (light blue)

with some large value of Np and decrease Np, then at Np = JL/2 (red dotted line) a new phase

(light red region) becomes available before we reach the cosmic censorship bound (thick blue

dashed curve). As soon as it becomes available, this new phase entropically dominates over

the BMPV phase. As we further decrease Np, the BMPV phase disappears at the cosmic

censorship bound Np = J2
L/4N (blue dashed line) while the new phase continues to exist and
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phase is thermodynamically dominant. We will analyze in detail the possible phases both in

the CFT and in the bulk, both analytically and numerically, and find new phases that for the

same charges are thermodynamically dominant over other known phases in the non-Cardy

regime. In the bulk, the new phase corresponds to a black hole surrounded by a supertube,

or to a black ring. We can interpret both bulk solutions as resulting from the moulting or

hair-shedding of the BMPV black hole. In one configuration the hair is a supertube, and in

the other one the hair is a Gibbons-Hawking or Taub-NUT center (corresponding to a D6

brane in four dimensions) whose shedding changes the topology of the black hole horizon and

transforms it into a black ring. As a result, the phase diagram shown in Fig. 1 is significantly

modified in the non-Cardy regime.

The CFT phase diagram is shown in Fig. 2a. If we start in the BMPV phase (light blue)

with some large value of Np and decrease Np, then at Np = JL/2 (red dotted line) a new phase

(light red region) becomes available before we reach the cosmic censorship bound (thick blue

dashed curve). As soon as it becomes available, this new phase entropically dominates over

the BMPV phase. As we further decrease Np, the BMPV phase disappears at the cosmic

censorship bound Np = J2
L/4N (blue dashed line) while the new phase continues to exist and
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ask what is the entropy of the system for given values of Np > 0 and JL (JR is left unfixed).

In the Cardy regime

Np − J2
L/4N " N, (1.1)

where c = 6N is the central charge of CFT, the Cardy formula (and the spectral flow sym-

metry) on the CFT side tells us that the entropy is given by

SCardy = 2π
√

NNp − J2
L/4. (1.2)

Correspondingly, in the bulk, there is the BMPV black hole [9], which is a single-center BPS

black hole and nicely reproduces the Cardy entropy (1.2). Although the Cardy formula is

valid only in the region (1.1), the bulk BMPV black hole exists for any value of Np larger than

the bound Np = J2
L/4N , which is sometimes called the “cosmic censorship bound”. Actually,

one can identify the CFT phase (the “long string sector”) dual to the bulk BMPV black hole

and show that this CFT phase exists all the way down to the cosmic censorship bound and

its entropy is equal to (1.2) in the large N limit. Based on these, the phase diagram of the

D1-D5 system has been thought to be as shown in Figure 1. Above the cosmic censorship








Figure 1: The conventional phase diagram of the D1-D5 system. Above the blue dotted
parabola Np = J2

L/4N (cosmic censorship bound) is the BMPV black hole phase (light blue),
while below the parabola is the phase of a gas of sugra particles (gray). The range of Np, JL

is bounded from below by the unitarity bound (green solid polygon).

bound the system is in the BMPV black hole phase, while below the bound the system is in

the phase of a gas of supergravity (sugra) particles.

However, in the parameter region outside (1.1), namely in the non-Cardy regime, the Cardy

formula (1.2) is no longer valid and there is no guarantee that the BMPV black hole phase is

the thermodynamically dominant phase. We will do detailed analyses of possible phases both

in the CFT and the bulk, some analytic and some numerical, and find new phases that are

thermodynamically dominant over other known phases in the non-Cardy regime. In the bulk,

the new phase is a black hole/ring state. As a result, the phase diagram shown in Figure 1 is

significantly modified in the non-Cardy regime.
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Sorb. pt. > Sgrav. pt.

Standard lore is that bosonic and fermion short multiplets combine and lift: 
thats why index is a useful quantity

However this is a counter example and precisely these special states contribute 
to the entropy enigma

Not only are these responsible for enigmatic phase but also make up black holes 
outside cosmic censorship bound



Open Questions
Is there a new twisted index? Is this an artifact of moving in a submanifold of 
the moduli space?

Are there other systems in other dimensions which have these features (hair 
with dipole charge, entropy enigmas explained in dual CFT)?

Is there a non-extremal version of moulting? The CFT analyisis goes through. 
Partially answered (probe limit)... see Bert Vercnocke’s talk.



Thank You


