FromTwistors to Amplitudes

by Andreas Brandhuber

Queen Mary, University of London

based on:

- hep-th/04072I4 AB-Spence-Travaglini
- hep-th/04I0280 Bedford-AB-Spence-Travaglini
- hep-th/04I2I08 Bedford-AB-Spence-Travaglini
- hep-th/0502I46 Bedford-AB-Spence-Travaglini
- hep-th/0506068 AB-McNamara-Spence-Travaglini

Outline:

- Motivation \& Aims
- Scattering Amplitudes in Gauge Theory
- Colour Decomposition \& Spinor Helicity Formalism
- Twistor Space
- MHV Diagrams
- Loop Amplitudes from MHV Vertices
- Super Yang-Mills and pure Yang-Mills
- Generalized Unitarity
- Cut-Constructibility
- Generalised Cuts
- Generalised Unitarity in $D=4-2 \varepsilon$ Dimensions
- Summary \& Outlook

Perturbative N=4 SYM = Topological String on Twistor Space

Why is that interesting ?

- Explains unexpected simplicity of scattering amplitudes in Yang Mills \& gravity

Simple Geometric Structure in Twistor Space
New Diff. Equations for Amplitudes

- New tools to calculate amplitudes

MHV Diagrams for trees and loops
Generalized Unitarity
New Recursion Relations

Motivation

- LHC is coming
- Precision pert. QCD calculations
- Long wishlist of processes to be computed
- New techniques are needed
- Textbook methods hide simplicity of amplitudes
- Intermediate expressions are large
- Factorial growth of nr. of diagrams, e.g. gluon scattering

$g g=>n g$	$n=7$	$n=8$	$n=9$
	559405	10525900	224449225

Motivation cont'd

- Luckily we do not have to use textbook techniques
- color decomposition
- spinor helicity
- unitarity
- supersymmetry
- string theory ...
- and since 2004
- twistor string (inspired) techniques

Color Decomposition

$$
\begin{aligned}
& \mathcal{A}_{n}^{\text {tree }}\left(\left\{p_{i}, \varepsilon_{i}, a_{i}\right\}\right)=i g^{n-2} \delta^{(4)}\left(\sum_{i=1}^{n} p_{i}\right) \times \\
& \sum_{\sigma \in S_{n} / Z_{n}} \operatorname{Tr}\left(T^{a_{\sigma(1)}} \ldots T^{a_{\sigma(n)}}\right) A_{n}^{\text {tree }}\left(\sigma\left(p_{1}, \varepsilon_{1}\right), \ldots, \sigma\left(p_{n}, \varepsilon_{n}\right)\right)
\end{aligned}
$$

- at tree level Yang-Mills is planar
- only diagrams with fixed cyclic ordering contribute to the "color stripped amplitudes" $A_{n}^{\text {tree }}$
- analytic structure simpler
- At loop level, also multi-traces; subleading in $1 / N$
- At one-loop simple relation between planar \& nonplanar terms

Spinor helicity formalism

- Responsible for the existence of compact formulas of tree and loop amplitudes in massless theories
- The 4D Lorentz Group (complexified) $\quad S L(2, \mathbb{C}) \times S L(2, \mathbb{C})$

$$
p_{\mu} \Longleftrightarrow p_{a \dot{a}}=p_{\mu} \sigma_{a \dot{a}}^{\mu} ; \quad a, \dot{a}=1,2
$$

massless

$$
p_{\mu} p^{\mu}=\operatorname{det} p_{a \dot{a}}=0 \Rightarrow p_{a \dot{a}}=\lambda_{a} \tilde{\lambda}_{\dot{a}}
$$

Note: In real Mink

$$
\tilde{\lambda}=\bar{\lambda}
$$

- Spinor Products

$$
\langle i j\rangle \equiv \lambda_{a}^{i} \lambda_{b}^{j} \varepsilon^{a b},[i j] \equiv \tilde{\lambda}_{\dot{a}}^{i} \tilde{\lambda}_{\dot{b}}^{j} \varepsilon^{\dot{a} \dot{b}} \quad \Rightarrow 2 p_{i} \cdot p_{j}=\langle i j\rangle[j i]
$$

- $\left\{p_{i}^{\mu}, \varepsilon_{i}^{\mu}\right\} \quad$ are redundant; the spinor variables $\left\{\lambda_{i}^{a}, \tilde{\lambda}_{i}^{\dot{e}}\right\}$ contain just the right d.o.f. to describe momentum \& wavefnct./polarization of massless particles of arbitrary helicity h

- Very Simple!
- Holomorphic, depends only on λ_{i}, not on $\tilde{\lambda}_{i}$
- Correct for $\mathrm{N}=4,2$, I Super Yang-Mills, pure glue \& QCD
- In N=4 SYM similar formulas for amplitudes with two gluons replaced by fermions/scalars

Twistor Space

... is a "I/2 Fourier transform" of spinor space:

$$
\left(\lambda_{a}, \tilde{\lambda}_{\dot{a}}\right) \quad \Rightarrow \quad\left(\lambda_{a}, \mu_{\dot{a}}\right)
$$

- Twistor Space is complex 4 dim'l $\quad\left(\lambda_{1}, \lambda_{2}, \mu^{\dot{1}}, \mu^{\dot{2}}\right)$
- Amplitudes are homogeneous functions on twistor space

$$
\text { Projective Twistor Space } \quad \mathbb{C P}^{3}
$$

$$
(\lambda, \mu) \sim(t \lambda, t \mu)
$$

Twistor Space cont'd

- Relations between Minkowski space and projective T. S. Incidence Relation: $\mu^{\dot{a}}+x^{a \dot{a}} \lambda_{a}=0$
point in Mink

nullplane in Mink

point in proj.T.S.

Amplitudes in Twistor Space

- MHV amplitudes are holomorphic (except for momentum conservation); perform I/2 Fourier transform

$$
\Rightarrow A_{\mathrm{MHV}} \int d x \int \prod_{i} d \tilde{\lambda}_{i} e^{i \mu_{i} \tilde{\lambda}_{i}} e^{i x \lambda_{i} \tilde{\lambda}_{i}} \sim \prod_{i} \delta^{(2)}\left(\mu_{i}+x \lambda_{i}\right)
$$

Hence: For MHV amplitudes all points (=ext. gluons) lie on a line in projective Twistor Space

Amplitudes in Twistor Space cont'd

- Witten's conjecture (2003): L-loop amplitudes with Q negative helicity gluons localise on curves of degree $=\mathrm{Q}-\mathrm{I}+\mathrm{L}$ and genus<=L
- Localisation properties of amplitudes in proj.T.S. translate into differential operators obeyed by the amplitudes in momentum space: $\mu \rightarrow i \partial / \partial \tilde{\lambda}$
- For non-MHV tree amplitudes "experiments" with diff. operators reveal:

MHV Diagrams

- MHV amplitude = local interaction in Mink
- CSW Rules (Cachazo-Svrcek-Witten)
- MHV amplitudes continued off-shell as local vertices
- Connect MHV vertices with scalar propagators: $\frac{1}{P^{2}}$
- Sum diagrams with fixed cyclic ordering of ext. lines

Ex: $\left\langle 1^{-} 2^{-} 3^{-} 4^{+} 5^{+} 6^{+}\right\rangle$

Off-shell continuation of spinor:
$\lambda_{P a}=P_{a \dot{a}} \eta^{\dot{a}}$
$\eta^{\dot{a}} \ldots$ reference spinor

MHV diagrams cont'd

some of the 5 missing diagrams of $\left\langle 1^{-} 2^{-} 3^{-} 4^{+} 5^{+} 6^{+}\right\rangle$

- Reproduce known and obtain new scattering amplitudes in any massless gauge theory
- Correct factorisation
- multiparticle poles
- collinear/soft limits

MHV diagrams - applications

- Amplitudes of gluons with fermions/scalars Georgiou-Khoze,WuZhu
- Amplitudes with quarks Georgiou-Khoze, Su-Wu
- Higgs plus partons Dixon-Glover-Khoze, Badger-Glover-Khoze
- Electroweak vector boson currents Bern-Forde-Kosower-Mastrolia

From Trees to Loops (AB-Spence-Travaglini)

- Original prognosis from twistor string theory was negative (Berkovits-Witten),"pollution" with Conformal SUGRA modes
- Try anyway:
- Connect $\mathrm{V}=\mathrm{Q}-\mathrm{I}+\mathrm{L}$ MHV vertices, using the same offshell continuation as for trees
- Perform loop integration! Measure?
- Simplest Ex.: MHV I-loop amplitudes in N=4 SYM

MHV one-loop amplitudes in N=4 SYM

- Computed by Bern-Dixon-Dunbar-Kosower (1994) using four-dim'l cut-constructibility (works for SUSY, massless theories) = Unitarity
- Result is expressed in terms of "2-mass easy box functions"

$$
I^{2 m e}\left(s, t, P^{2}, Q^{2}\right)=\int d^{4-2 \varepsilon} L \frac{1}{L^{2}(L-p)^{2}(L-P-p)^{2}(L+Q)^{2}}
$$

MHV vertices at one-loop

$\begin{aligned} & \text { Loop integration } \\ & \text { (schematically): }\end{aligned} A_{\mathrm{M} H V}^{1-\text { loop }}=\sum_{m_{1}, m_{2}, h} \int d \mathcal{M} A_{L}^{\text {tree }}\left(-L_{1}, m 1, \ldots, m_{2}, L_{2}\right)$ $\times A_{R}^{\text {tree }}\left(-L_{2}, m 2+1, \ldots, m_{1}-1, L_{1}\right)$
Loop measure: $\quad d \mathscr{M}=\frac{d^{4} L_{1}}{L_{1}^{2}+i \varepsilon} \frac{d^{4} L_{2}}{L_{2}^{2}+i \varepsilon} \delta^{(4)}\left(L_{2}-L_{1}+P_{L}\right)$
Off-shell continutation (as before) $L_{\mu}=l_{\mu}+z \eta_{\mu}$

Hence

$$
\begin{array}{rc}
\frac{d^{4} L}{L^{2}+i \varepsilon}=\frac{d z}{z} & d^{4} l \delta^{(+)}\left(l^{2}\right) \\
\begin{array}{c}
\text { dipersive } \\
\text { measure }
\end{array} & \begin{array}{c}
\text { phase space } \\
\text { measure }
\end{array}
\end{array}
$$

N=4 SYM one-loop cont'd

Putting everything together and integrating over $z^{\prime}=z_{1}+z_{2}$ we find, using $z=z_{1}-z_{2}$

$$
\begin{array}{r}
d \mathcal{M}=\frac{d z}{z} \times d L I P S\left(l_{2},-l_{1} ; P_{L ; z}\right) \\
P_{L ; z}=P_{L}-z \eta
\end{array}
$$

dLIPS is the 2-particle Lorentz inv. phase space measure and the corresponding integral calculates the branchcut or imaginary part of the amplitude! Note however the shift in $P_{L ; z}=P_{L}-z \eta$

The remaining integration over z is a dispersion (type) integral, which reproduces the full amplitude!

The Return of the Analytic S-Matrix

N=4 SYM one-loop cont'd

After some manipulations we find the result to be proportional to the sum over contributions from all possible cuts of all possible 2-mass easy box functions

Note: only after summing over the four cuts dependence on η disappears!

Summary of N=4 SYM at one-loop

- Agrees with result of (Bern-Dixon-Dunbar-Kosower)
- Incorporates large numbers of conventional Feynman diag.
- Naturally leads to "dispersion integrals"
- Non-trivial check of MHV diagrammatic method
- covariance (no dependence on η)
- what about non-MHV amplitudes?
- Simpler form of "2-mass easy box function":

$$
\begin{array}{r}
I^{2 m e}\left(s, t, P^{2}, Q^{2}\right)=-\frac{1}{\varepsilon^{2}}\left[(-s)^{-\varepsilon}+(-t)^{-\varepsilon}-\left(-P^{2}\right)^{-\varepsilon}-\left(-Q^{2}\right)^{-\varepsilon}\right] \\
+\operatorname{Li}_{2}\left(1-a P^{2}\right)+\mathrm{L} i_{2}\left(1-a Q^{2}\right)-\mathrm{L} i_{2}(1-a s)-\mathrm{L} i_{2}(1-a t) \\
a=\frac{P^{2}+Q^{2}-s-t}{P^{2} Q^{2}-s t}=\frac{u}{P^{2} Q^{2}-s t}
\end{array}
$$

Twistor Space Localisation

(a)
(b)

- Using Diff. Operators F and K to determine collinearity \& coplanarity, (Cachazo-Svrcek-Witten) found (a), (b) and (c)
- Our computation shows that (c) should be absent!
- One-loop amplitudes not annihilated by Diff. Ops.
- Holomorphic Anomaly $=$ rational function
- New tool to calculate new one-loop amplitudes

New 7-point amplitude in N=4 SYM (Britto-Cachazo-Feng)
New 6-point amplitudes in N=I SYM (Bidder, Bjerrum-Bohr, Dixon, Dunbar)

Generalisations

- In principle our approach can readily be applied to nonMHV amplitudes and theories with less supersymmety
- MHV, one-loop amplitudes in N=I SYM (Bedford-AB-SpenceTravaglini)
- Contribution of a chiral multiplet (susy decomposition) $A^{\mathcal{N}=1, \text { vector }}=A^{\mathcal{N}=4}-3 A^{\mathcal{V}=1, \text { chiral }}$
- Result (BDDK) expressed in terms of (finite part of) scalar box, and triangle functions:
- MHV diagram method agrees with BDDK
- Works despite the absence of Twistor String Dual of $\mathrm{N}=\mathrm{I}$ SYM

MHV, one-loop in $\mathrm{N}=$ I SYM

$$
A_{\text {chiral }}^{1-\text { loop }, M H V}=A^{\text {tree }, M H V} \times I
$$

MHV, one-loop amplitudes in Yang-Mills

- non-supersymmetric theories are not "4D cutconstructible"
- Amplitudes contain rational terms that are not linked to terms containing cuts (but see later in the talk)
- From MHV vertices we obtain cut-containing terms
- SUSY decomposition

$$
A^{g}=\left(A^{g}+4 A^{f}+3 A^{s}\right)-4\left(A^{f}+A^{s}\right)+A^{s}
$$

To be computed

Pure Yang-Mills cont'd

- Result is expressed in terms of
- finite box functions: $I_{\text {finite }}^{2 \mathrm{me}}=B\left(s, t, P^{2}, Q^{2}\right)$
- triangle functions: $T^{(r)}(p, P, Q)=\frac{\log \left(Q^{2} / P^{2}\right)}{\left(Q^{2}-P^{2}\right)^{r}}$
- Coefficient of B is: $\quad\left(b_{m_{1} m_{2}}^{i j}\right)^{2}$
- Agrees with 5-point result and the case of adjacent negative helicity gluons of (BDDK)
- New Result for negative helicity gluons in arbitrary position
- First step towards QCD from MHV diagrams !

Generalized Unitarity

- Very old idea,"The Analytic S(-)Matrix" (Eden-Landshoff-OlivePolkinghorne I966; Chew I966); more recently (Bern-Dixon-Kosower 1997)
- 2004/05 "The Return of the Analytic S-Matrix"
- One-loop amplitudes in SUSY gauge theories are 4d cutconstructible
- One-loop amplitudes in N=4 SYM have a very simple form:

Q: can we find the rational coefficients c without integrations?

Quadruple Cuts

- Answer: Yes! (Britto-Cachazo-Feng)
- Quadruple Cuts $=$ replace four propagators by on-shell delta functions: $\quad 1 / L_{i}^{2} \rightarrow \delta^{(+)}\left(L_{i}^{2}\right), i=1,2,3,4$
- Loop integration localises completely! Requires complex momenta!
- The coefficients c are products of four on-shell tree amplitudes

$$
c=A_{1}^{\text {tree }} A_{2}^{\text {tree }} A_{3}^{\text {tree }} A_{4}^{\text {tree }}
$$

- $\mathrm{N}=4$ SYM at one-loop is reduced to algebra!

A quadruple cut selects a unique box function!

Multiple cuts for amplitudes in $\mathrm{N}=\mathrm{I} \mathrm{SYM}$

- Similar for one-loop amplitudes in $\mathrm{N}=$ I SYM, but more work

Fix coefficients a with quadruple cuts
Fix coefficients b with "triple cuts" (one remaining integration)
Fix c's with conventional unitarity cuts
New results: all $\mathrm{N}=\mathrm{I}$, one-loop, 6-point amplitudes and an infinite series $\left\langle 1^{-} 2^{-} 3^{-} 4^{+} \ldots n^{+}\right\rangle$
(Bidder, Bjerrum-Bohr, Dunbar, Perkins; Britto-Buchbinder-Cachazo-Feng)

Generalised Generalized Unitarity

(AB-McNamara-Spence-Travaglini)

- Problem: QCD one-loop amplitudes are not 4d cutconstructible Amplitudes contain rational terms
- Need to work in $D=4-2 \varepsilon$ dimensions
- $\quad \boldsymbol{R}(-s)^{-\varepsilon} \Rightarrow \boldsymbol{R}-\boldsymbol{R} \varepsilon \log (-s)+O\left(\varepsilon^{2}\right)$
- This requires the knowledge of tree amplitudes with some of the legs continued to $D=4-2 \varepsilon$ dimensions (DR)
- We can think of this as giving a uniform mass to internal particles. This mass has to be integrated over!
- $\quad L_{4-2 \varepsilon}^{2}=L_{4}^{2}+L_{-2 \varepsilon}^{2}=L_{4}^{2}-\mu^{2}$
- Feynman integrals with powers of $\left[\mu^{2}\right]$ inserted lead to integrals in $D=6-2 \varepsilon, 8-2 \varepsilon, \ldots$

Generalised Unitarity for YM

- The necessary amplitudes with massive particles are provided by old (Berends-Giele, BDDK) and new recursive techniques (Badger-Glover-Khoze-Syrcek) . Because of the SUSY decomposition of the amplitudes we only need to consider scalars running in the loop!
- Ex: <+++++> one-loop amplitude in YM from quadruple cut

$$
\begin{aligned}
& =\frac{[12]}{\langle 12\rangle} \frac{[34]}{\langle 34\rangle} \mu^{4} \\
& \Rightarrow A_{4}^{1-\text { loop }}=\frac{[12]}{\langle 12\rangle} \frac{[34]}{\langle 34\rangle} I_{4}^{4-2 \varepsilon}\left[\mu^{4}\right] \\
& I_{4}^{4-2 \varepsilon}\left[\mu^{4}\right]=(-\varepsilon)(1-\varepsilon) I_{4}^{8-2 \varepsilon}\left[\mu^{4}\right]=-\frac{1}{6}+O(\varepsilon)
\end{aligned}
$$

Generalised Unitarity for YM cont'd

- This also works for all other 4-point amplitudes: <-+++>, <--++> and <-+-+>
- This requires triple cuts but no 2-particle cuts.
- The result is expressed in terms of box and triangle functions in 4,6 and 8 dimensions
- The 5-point amplitude <+++++> requires only quadruple cuts! Expressed in terms of 8 dim'l box and 10 dim'l pentagon integrals.
- Other 5-point and 6-point amplitudes work in progress ...

Summary \& Outlook

- Exciting progress in calculating amplitudes in gauge theory and gravity
- new spectacular insights in the structure of amplitudes from twistor space
- New diagrammatic tools (twistor inspired)
- MHV diagrams: for tree level (CSW) and loop level amplitudes (BST)
- Generalised Unitarity:
- new efficient techniques to calculate amplitudes in supersymmetric theories, many new results (BDK,BCF)
- cut-containing parts and rational terms (require unitarity in $D=4-2 \varepsilon$) of amplitudes in QCD

Summary \& Outlook cont'd

- Recently: New on-shell recursion relations (Britto-Cachazo-Feng(Witten)) Use only on-shell data, analyticity and factorisation of amplitudes
- Gauge theory amplitudes with massless and massive particles (tree level)
- Gravity (tree level)
- Rational terms in one-loop QCD amplitudes
- Coefficients of integral functions in one-loop amplitudes

Many new results expected

New complete QCD amplitudes within reach!

