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D= 4−2!



  Perturbative N=4 SYM    =    Topological String on Twistor Space

Witten 2003 weak/weak

Why is that interesting ?

Simple Geometric Structure in Twistor Space

New Diff. Equations for Amplitudes

New tools to calculate amplitudes

MHV Diagrams for trees and loops

Generalized Unitarity

New Recursion Relations

Explains unexpected simplicity of scattering amplitudes        
in Yang Mills & gravity



Motivation

• LHC is coming

• Precision pert. QCD calculations

• Long wishlist of processes to be computed

• New techniques are needed

• Textbook methods hide simplicity of amplitudes

• Intermediate expressions are large

• Factorial growth of nr. of diagrams,  e.g. gluon scattering

g g => n g n=7 n=8 n=9
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Motivation cont’d

• Luckily we do not have to use textbook 
techniques

• color decomposition

• spinor helicity

• unitarity

• supersymmetry

• string theory ...

• and since 2004

• twistor string (inspired) techniques



Color Decomposition

• at tree level Yang-Mills is planar

• only diagrams with fixed cyclic ordering contribute to the       
”color stripped amplitudes”                    

• analytic structure simpler

• At loop level, also multi-traces; subleading in

• At one-loop simple relation between planar & non-
planar terms
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Spinor helicity formalism

Responsible for the existence of compact formulas of tree
and loop amplitudes in massless theories

The 4D Lorentz Group (complexified) SL(2,C)×SL(2,C)
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µ
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on-shell

Spinor Products

〈i j〉 ≡ !ia!
j

b"
ab , [i j]≡ !̃iȧ!̃
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Note: In real Mink
!̃= !



n-Gluon Tree MHV-Amplitudes

• Very Simple!

• Holomorphic, depends only on      , not on

• Correct for N=4,2,1 Super Yang-Mills, pure glue & QCD

• In N=4 SYM similar formulas for amplitudes with two 
gluons replaced by fermions/scalars  
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Twistor Space

• Twistor Space is complex 4 dim’l 

• Amplitudes are homogeneous functions on twistor space            

... is a “1/2 Fourier transform” of spinor space:

(!a, !̃ȧ) ⇒ (!a,µȧ)

(!1,!2,µ1̇,µ2̇)

Projective Twistor Space

(!,µ)∼ (t!, tµ)

CP3



Twistor Space cont’d
• Relations between Minkowski space and projective T. S.

point in Mink

line in proj. T.S.

nullplane in Mink

point in proj. T.S.

µȧ+ xaȧ!a = 0Incidence Relation:



Amplitudes in Twistor Space

• MHV amplitudes are holomorphic (except for momentum 
conservation); perform 1/2 Fourier transform

⇒ AMHV

Z
dx

Z
!
i

d"̃ie
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i

#(2)(µi+ x"i)

Hence: For MHV amplitudes all points (=ext. gluons) 
  lie on a line in projective Twistor Space

MHV



Amplitudes in Twistor Space cont’d

• Witten’s conjecture (2003): L-loop amplitudes with Q 
negative helicity gluons localise on curves of               
degree=Q-1+L      and     genus<=L

• Localisation properties of amplitudes in proj. T.S. translate 
into differential operators obeyed by the amplitudes in 
momentum space: 

• For non-MHV tree amplitudes “experiments” with diff. 
operators reveal:

µ → i!/!"̃

Q=3

Q=4



MHV Diagrams
• MHV amplitude = local interaction in Mink

• CSW Rules  (Cachazo-Svrcek-Witten)

• MHV amplitudes continued off-shell as local vertices

• Connect MHV vertices with scalar propagators:

• Sum diagrams with fixed cyclic ordering of ext. lines

1

P2

!Pa = Paȧ"
ȧ

Off-shell continuation of spinor:

!ȧ . . . reference spinor
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MHV diagrams cont’d

• Reproduce known and obtain new scattering amplitudes in 
any massless gauge theory      dramatic simplifications

• Correct factorisation

• multiparticle poles

• collinear/soft limits

some of the 5 missing diagrams of 〈1−2−3−4+
5

+
6

+〉

MHVMHVMHVMHV



MHV diagrams - applications

• Amplitudes of gluons with fermions/scalars Georgiou-Khoze, Wu-
Zhu

• Amplitudes with quarks Georgiou-Khoze, Su-Wu

• Higgs plus partons Dixon-Glover-Khoze, Badger-Glover-Khoze

• Electroweak vector boson currents Bern-Forde-Kosower-Mastrolia



            From Trees to Loops  (AB-Spence-Travaglini)

• Original prognosis from twistor string theory was negative 
(Berkovits-Witten), ”pollution” with Conformal SUGRA modes

• Try anyway:

• Connect   V=Q-1+L   MHV vertices, using the same off-
shell continuation as for trees

• Perform loop integration! Measure?

• Simplest Ex.: MHV 1-loop amplitudes in N=4 SYM

Z
dM !

m1,m2,h
MHVMHV



MHV one-loop amplitudes in N=4 SYM
• Computed by Bern-Dixon-Dunbar-Kosower (1994) using 

four-dim’l cut-constructibility (works for SUSY, massless 
theories)  = Unitarity

• Result is expressed in terms of “2-mass easy box functions”

A
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MHV vertices at one-loop
Loop integration 
(schematically):

Loop measure:

A
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MHV = !

m1,m2,h

Z
dM AtreeL (−L1,m1, . . . ,m2,L2)

×AtreeR (−L2,m2+1, . . . ,m1−1,L1)

dM =
d
4
L1

L
2

1
+ i!

d
4
L2

L
2

2
+ i!

"(4)(L2−L1+PL)

Off-shell continutation (as before) Lµ= lµ+ z!µ

Hence
d4L

L2+ i!
=
dz

z
× d

4
l"(+)(l2)

dipersive
measure

phase space
measure

reference null-vector



N=4 SYM one-loop cont’d
Putting everything together and integrating over          
we find, using

z
′ = z1+ z2

z= z1− z2

dM =
dz

z
×dLIPS(l2,−l1;PL;z)

PL;z = PL− z!
dLIPS is the 2-particle Lorentz inv. phase space measure and the
corresponding integral calculates the branchcut or imaginary
part of the amplitude! Note however the shift in 

The remaining integration over z is a dispersion (type) integral,
which reproduces the full amplitude!

PL;z = PL− z!

The Return of the Analytic S-Matrix



N=4 SYM one-loop cont’d

After some manipulations we find the result to be proportional
to the sum over contributions from all possible cuts of all possible 
2-mass easy box functions

A
tree

MHV
×

Note: only after summing over the four cuts dependence on 
         disappears! 

!



Summary of N=4 SYM at one-loop

• Agrees with result of (Bern-Dixon-Dunbar-Kosower)

• Incorporates large numbers of conventional Feynman diag.

• Naturally leads to “dispersion integrals”

• Non-trivial check of MHV diagrammatic method

• covariance (no dependence on      )

• what about non-MHV amplitudes?

• Simpler form of  “2-mass easy box function”:

!

I2me(s, t,P2,Q2) =− 1
!2

[
(−s)−! + (−t)−! − (−P2)−! − (−Q2)−!

]
+Li2(1−aP2) + Li2(1−aQ2) − Li2(1−as) − Li2(1−at) ,

a =
P2+Q2− s− t
P2Q2− st =

u

P2Q2− st



Twistor Space Localisation

• Using Diff. Operators F and K to determine collinearity & 
coplanarity, (Cachazo-Svrcek-Witten) found (a), (b) and (c)

• Our computation shows that (c) should be absent!

• One-loop amplitudes not annihilated by Diff. Ops.

• Holomorphic Anomaly  =  rational function

• New tool to calculate new one-loop amplitudes
New 7-point amplitude in N=4 SYM (Britto-Cachazo-Feng)
New 6-point amplitudes in N=1 SYM (Bidder, Bjerrum-Bohr, Dixon, Dunbar)



Generalisations

• In principle our approach can readily be applied to non-
MHV amplitudes and theories with less supersymmety

• MHV, one-loop amplitudes in N=1 SYM (Bedford-AB-Spence-
Travaglini)

• Contribution of a chiral multiplet (susy decomposition)             
.

• Result (BDDK) expressed in terms of (finite part of) scalar 
box, and triangle functions:

• MHV diagram method agrees with BDDK

• Works despite the absence of Twistor String Dual of 
N=1 SYM

A
N =1,vector = A

N =4−3AN =1,chiral



MHV, one-loop in N=1 SYM

A
1−loop,MHV
chiral = Atree,MHV × I

I =!
m,s

bi, jm,s +!
m,a

ci, jm,a
finite



MHV, one-loop amplitudes in Yang-Mills

• non-supersymmetric theories are not “4D cut-
constructible”

• Amplitudes contain rational terms that are not linked to 
terms containing cuts (but see later in the talk)

• From MHV vertices we obtain cut-containing terms

• SUSY decomposition                                                                  

Ag = (Ag+4Af +3As)−4(Af +As)+As

To be computed



Pure Yang-Mills cont’d

• Result is expressed in terms of

• finite box functions:

• triangle functions: 

• Coefficient of B is: 

• Agrees with 5-point result and the case of adjacent negative 
helicity gluons of (BDDK) 

• New Result for negative helicity gluons in arbitrary position

• First step towards QCD from MHV diagrams !

I2me
finite = B(s, t,P2,Q2)

T (r)(p,P,Q) =
log(Q2/P2)
(Q2−P2)r(

bi jm1m2

)2



Generalized Unitarity

• Very old idea, “The Analytic S(-)Matrix” (Eden-Landshoff-Olive-

Polkinghorne 1966; Chew 1966); more recently (Bern-Dixon-Kosower 
1997)

• 2004/05 “The Return of the Analytic S-Matrix”

• One-loop amplitudes in SUSY gauge theories are 4d cut-
constructible

• One-loop amplitudes in N=4 SYM have a very simple form:

= !c

Q: can we find the rational coefficients c without integrations?



Quadruple Cuts
• Answer:     Yes!     (Britto-Cachazo-Feng)

• Quadruple Cuts  =  replace four propagators by on-shell 
delta functions:

• Loop integration localises completely! Requires complex 
momenta!

• The coefficients c are products of four on-shell tree 
amplitudes

• N=4 SYM at one-loop is reduced to algebra!

1/L2
i
→ !(+)(L2

i
) , i= 1,2,3,4

= c
A quadruple cut
selects a unique
box function!

c= A
tree

1
A
tree

2
A
tree

3
A
tree

4



Multiple cuts for amplitudes in N=1 SYM

• Similar for one-loop amplitudes in N=1 SYM, but more 
work

! a + ! b
+ ! c

Fix coefficients a with quadruple cuts

Fix coefficients b with “triple cuts” (one remaining integration)

Fix c’s with conventional unitarity cuts

New results: all N=1, one-loop, 6-point amplitudes and an 
infinite series 
(Bidder, Bjerrum-Bohr, Dunbar, Perkins; Britto-Buchbinder-Cachazo-Feng)

〈1−2−3−4+ . . .n+〉



Generalised Generalized Unitarity

• Problem: QCD one-loop amplitudes are not 4d cut-
constructible       Amplitudes contain rational terms

• Need to work in                 dimensions

•  

• This requires the knowledge of tree amplitudes with some 
of the legs continued to                dimensions (DR)

• We can think of this as giving a uniform mass to internal 
particles. This mass has to be integrated over!

•  

• Feynman integrals with powers of         inserted lead to 
integrals in  

(AB-McNamara-Spence-Travaglini)

D= 4−2!

R(−s)−! ⇒ R−R! log(−s)+O(!2)

D= 4−2!

L2
4−2! = L2

4
+L2−2! = L2

4
−µ2

[µ2]
D= 6−2! , 8−2! , . . .



Generalised Unitarity for YM

• The necessary amplitudes with massive particles are 
provided by old (Berends-Giele, BDDK) and new recursive 
techniques (Badger-Glover-Khoze-Svrcek) . Because of the SUSY 
decomposition of the amplitudes we only need to consider 
scalars running in the loop!

• Ex: <++++> one-loop amplitude in YM from quadruple cut

=
[12]
〈12〉

[34]
〈34〉µ

4

⇒ A
1−loop
4 =

[12]
〈12〉

[34]
〈34〉I

4−2!
4 [µ4]

I4−2!
4

[µ4] = (−!)(1− !)I8−2!
4

[µ4] =−1
6

+O(!)



Generalised Unitarity for YM cont’d

• This also works for all other 4-point amplitudes:               
<-+++>, <--++> and <-+-+>

• This requires triple cuts but no 2-particle cuts.

• The result is expressed in terms of box and triangle 
functions in 4, 6 and 8 dimensions

• The 5-point amplitude <+++++> requires only quadruple 
cuts! Expressed in terms of 8 dim’l box and 10 dim’l 
pentagon integrals.

• Other 5-point and 6-point amplitudes work in progress ...



Summary & Outlook

• Exciting progress in calculating amplitudes in gauge theory and 
gravity 

• new spectacular insights in the structure of amplitudes from 
twistor space

• New diagrammatic tools (twistor inspired)

• MHV diagrams: for tree level (CSW) and loop level 
amplitudes (BST)

• Generalised Unitarity:

• new efficient techniques to calculate amplitudes in 
supersymmetric theories, many new results (BDK,BCF)

• cut-containing parts and rational terms (require unitarity   
in               ) of amplitudes in QCDD= 4−2!



Summary & Outlook cont’d

• Recently: New on-shell recursion relations (Britto-Cachazo-Feng-

(Witten)) Use only on-shell data, analyticity and factorisation 
of amplitudes

• Gauge theory amplitudes with massless and massive 
particles (tree level)

• Gravity (tree level)

• Rational terms in one-loop QCD amplitudes

• Coefficients of integral functions in one-loop amplitudes

New complete QCD amplitudes within reach !

Many new results expected


